Objectives: Muscle cell necrosis is the most common pathological manifestation of idiopathic inflammatory myopathies. Evidence suggests that glycolysis might participate in it. However, the mechanism is unclear. This study aimed to determine the role of glycolysis in the muscle damage that occurs in DM/PM.
Methods: Mass spectrometry was performed on muscle lesions from DM/PM and control subjects. The expression levels of pyruvate kinase isozyme M2 (PKM2), the nucleotide-binding and oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis-related genes in muscle tissues or plasma were determined by real-time PCR, western blot analysis, IF and ELISA. In addition, IFNγ was used to stimulate myotubes, and the relationships among PMK2 expression, NLRP3 inflammasome activation and pyroptosis were investigated.
Results: Mass spectrometry and bioinformatics analysis suggested that multiple glycolysis processes, the NLRP3 inflammasome and programmed cell death pathway-related proteins were dysregulated in the muscle tissues of DM/PM. PKM2 and the NLRP3 inflammasome were upregulated and positively correlated in the muscle fibres of DM/PM. Moreover, the pyroptosis-related proteins were increased in muscle tissues of DM/PM and were further increased in PM. The levels of PKM2 in muscle tissues and IL-1β in plasma were high in patients with anti-signal recognition particle autoantibody expression. The pharmacological inhibition of PKM2 in IFNγ-stimulated myotubes attenuated NLRP3 inflammasome activation and subsequently inhibited pyroptosis.
Conclusion: Our study revealed upregulated glycolysis in the lesioned muscle tissues of DM/PM, which activated the NLRP3 inflammasome and leaded to pyroptosis in muscle cells. The levels of PKM2 and IL-1β were high in patients with anti-signal recognition particle autoantibody expression. These proteins might be used as new biomarkers for muscle damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rheumatology/keaa473 | DOI Listing |
Research (Wash D C)
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.
Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment.
View Article and Find Full Text PDFFront Microbiol
January 2025
Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Objective: This study investigates the protective effects of lactic acid, a metabolite of , on non-alcoholic fatty liver disease (NAFLD) induced by a high-sugar, high-fat diet (HFD) in mice, in the context of the gut-liver axis.
Methods: A NAFLD mouse model was established using a HFD, and different intervention groups were set up to study the protective effects of and its metabolite lactic acid. The groups included a control group, NAFLD group, treatment group, Glyceraldehyde-3-P (G-3P) co-treatment group, and NOD-like receptor family pyrin domain containing 3 (NLRP3) overexpression group.
Front Med (Lausanne)
January 2025
Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
Introduction: Podocytopathies are a uniquely renal disease syndrome, in which direct or indirect podocyte injury leads to proteinuria or nephrotic syndrome. Of the many factors that contribute to podocytopathies, the abnormal regulation of autophagy, such insufficient or excessive autophagy levels, have been proposed to play a significant role in the occurrence and development of podocytopathies. However, there still has been a lack of systematic and comparative research to elucidate exact role of autophagy in podocytopathies and its current research status.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China; Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China. Electronic address:
Background: In addition to nasal symptoms, allergic rhinitis (AR) has increasingly been reported to be associated with depression-like behaviors. Recent evidence suggests that neuroinflammation in the hypothalamus may cause these depressive symptoms in AR. However, the precise mechanisms and effective treatments remain to be elucidated.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt. Electronic address:
Chemotherapy-induced cognitive impairment, referred to as "chemobrain", is widely acknowledged as a significant adverse effect of cancer therapy. Paclitaxel, a chemotherapeutic drug, has been reported to cause cognitive impairment clinically and in animal models. However, the precise mechanisms are not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!