Substance P neuropeptide is here reported to self-assemble into well-defined semi-flexible nanotubes. Using a blend of synchrotron small angle X-ray scattering, atomic force microscopy and other biophysical techniques, the natural peptide is shown to self-assemble into monodisperse 6 nm wide nanotubes, which can closely associate into nano-arrays with nematic properties. Using simple protocols, the nanotubes could be precipitated or mineralised while conserving their dimensions and core-shell morphology. Our discovery expands the small number of available monodisperse peptide nanotube systems for nanotechnology, beyond direct relevance to biologically functional peptide nanostructures since the substance P nanotubes are fundamentally different from typical amyloid fibrils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr05622g | DOI Listing |
Nanoscale
June 2024
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
DNA nanotechnology offers many means to synthesize custom nanostructured materials from the ground up in a hierarchical fashion. While the assembly of DNA nanostructures from small (nanometer-scale) monomeric components has been studied extensively, how the hierarchical assembly of rigid or semi-flexible units produces multi-micron scale structures is less understood. Here we demonstrate a mechanism for assembling micron-scale semi-flexible DNA nanotubes into extended structures.
View Article and Find Full Text PDFInt J Mol Sci
August 2023
Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary.
Membrane nanotubes are cell protrusions that grow to tens of micrometres and functionally connect cells. Actin filaments are semi-flexible polymers, and their polymerisation provides force for the formation and growth of membrane nanotubes. The molecular bases for the provision of appropriate force through such long distances are not yet clear.
View Article and Find Full Text PDFSoft Matter
July 2022
Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.
Studying the Brownian motion of fibers and semi-flexible filaments in porous media is the key to understanding the transport and mechanical properties in a variety of systems. The motion of semi-flexible filaments in gel-like porous media including polymer networks and cell cytoskeleton has been studied theoretically and experimentally, whereas the motion of these materials in packed-colloid porous media, advanced foams, and rock-like systems has not been thoroughly studied. Here we use video microscopy to directly visualize the reptation and transport of intrinsically fluorescent, semiflexible, semiconducting single-walled carbon nanotubes (SWCNTs) in the sub-micron pores of packed colloids as fixed obstacles of packed-colloid porous media.
View Article and Find Full Text PDFBiosens Bioelectron
September 2021
Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
High-efficiency electroencephalogram (EEG) dry electrodes are a key component of brain-computer interface (BCI) technology because of their direct contact with the scalp. In this study, a semi-flexible polydopamine (PDA)/Pt-TiO electrode is prepared for the dry-contact acquisition of EEG signals. The PDA biofilm adheres strongly to the scalp and maintains a dynamic balance of water and ions.
View Article and Find Full Text PDFNanoscale
November 2020
School of Health and Biomedical Sciences, Translational Immunology and Nanotechnology (TIN) Program, RMIT University, Bundoora VIC3083, Australia.
Substance P neuropeptide is here reported to self-assemble into well-defined semi-flexible nanotubes. Using a blend of synchrotron small angle X-ray scattering, atomic force microscopy and other biophysical techniques, the natural peptide is shown to self-assemble into monodisperse 6 nm wide nanotubes, which can closely associate into nano-arrays with nematic properties. Using simple protocols, the nanotubes could be precipitated or mineralised while conserving their dimensions and core-shell morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!