A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Community-Based Study Identifying Metabolic Biomarkers of Mild Cognitive Impairment and Alzheimer's Disease Using Artificial Intelligence and Machine Learning. | LitMetric

AI Article Synopsis

  • There is a critical need for an effective, non-invasive tool for diagnosing Alzheimer's disease (AD) and assessing its severity, with metabolomics showing potential for this purpose.
  • Using artificial intelligence and machine learning, researchers aimed to determine if a specific set of plasma metabolites could serve as reliable biomarkers for mild cognitive impairment (MCI) and AD.
  • Out of 212 metabolites analyzed, five were identified as key differentiators between healthy individuals and those with MCI or AD, with models showing moderate accuracy and confirming disturbed lipid metabolism as a significant factor in dementia cases.

Article Abstract

Background: Currently, there is no objective, clinically available tool for the accurate diagnosis of Alzheimer's disease (AD). There is a pressing need for a novel, minimally invasive, cost friendly, and easily accessible tool to diagnose AD, assess disease severity, and prognosticate course. Metabolomics is a promising tool for discovery of new, biologically, and clinically relevant biomarkers for AD detection and classification.

Objective: Utilizing artificial intelligence and machine learning, we aim to assess whether a panel of metabolites as detected in plasma can be used as an objective and clinically feasible tool for the diagnosis of mild cognitive impairment (MCI) and AD.

Methods: Using a community-based sample cohort acquired from different sites across the US, we adopted an approach combining Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR), Liquid Chromatography coupled with Mass Spectrometry (LC-MS) and various machine learning statistical approaches to identify a biomarker panel capable of identifying those patients with AD and MCI from healthy controls.

Results: Of the 212 measured metabolites, 5 were identified as optimal to discriminate between controls, and individuals with MCI or AD. Our models performed with AUC values in the range of 0.72-0.76, with the sensitivity and specificity values ranging from 0.75-0.85 and 0.69-0.81, respectively. Univariate and pathway analysis identified lipid metabolism as the most perturbed biochemical pathway in MCI and AD.

Conclusion: A comprehensive method of acquiring metabolomics data, coupled with machine learning techniques, has identified a strong panel of diagnostic biomarkers capable of identifying individuals with MCI and AD. Further, our data confirm what other groups have reported, that lipid metabolism is significantly perturbed in those individuals suffering with dementia. This work may provide additional insight into AD pathogenesis and encourage more in-depth analysis of the AD lipidome.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-200305DOI Listing

Publication Analysis

Top Keywords

machine learning
16
mild cognitive
8
cognitive impairment
8
alzheimer's disease
8
artificial intelligence
8
intelligence machine
8
objective clinically
8
capable identifying
8
individuals mci
8
lipid metabolism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!