AI Article Synopsis

  • There is a significant gap in global coverage of pneumococcal conjugate vaccines (PCV), even though they effectively prevent invasive pneumococcal disease and pneumonia across various settings.
  • Current vaccines do not target all relevant serotypes of Streptococcus pneumoniae and there is no lyophilized form available, which would improve storage and distribution.
  • Research has identified a successful formulation for a lyophilized adjuvanted PCV containing 15 serotypes, showing enhanced stability and potency, which could lead to better global access to vaccines.

Article Abstract

Despite a consistent benefit of existing pneumococcal conjugate vaccine (PCV) on invasive pneumococcal disease and pneumonia across different epidemiological settings a tremendous gap exists towards global PCV coverage. Currently, no lyophilized dosage form exists in the PCV global vaccine marketplace and currently licensed vaccines target some, but not all relevant serotypes of Streptococcus pneumoniae. The development of lyophilized presentations of an adjuvanted multivalent vaccine formulation that aligns with the evolving epidemiological assessment of the pneumococcal disease offers broader coverage with distinct cold chain and thermostability advantages. To make progress towards this goal, we evaluated the feasibility of developing new formulation to enable a lyophilized adjuvanted PCV vaccine containing 15 different serotypes. Our findings successfully demonstrate a formulation design space that enables enhanced physical stability which controls vaccine agglomeration, preserves in-vitro vaccine potency, maintains PCV antigen adsorption, and yields elegant lyophilized cakes with acceptable clinically relevant reconstitution times. This research also demonstrates the benefit of utilizing specific vaccine formulation excipients and the effectiveness of excipient combinations that may be beneficial for other multivalent adjuvant containing vaccines to enable novel lyophilized formulations necessary for improved global vaccine access.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2020.10.038DOI Listing

Publication Analysis

Top Keywords

vaccine
9
pneumococcal conjugate
8
formulation design
8
pneumococcal disease
8
global vaccine
8
vaccine formulation
8
formulation
5
pcv
5
lyophilized
5
enabling lyophilized
4

Similar Publications

Rejuvenating the immune system.

Mol Oncol

January 2025

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.

Rejuvenation of elementary immune system components has emerged as a promising strategy to deal with increased susceptibility to infections, cancers, autoimmune disorders, and low efficacy to vaccines, frequently accompanying aging. In this context, the thymus has gained significant attention. A recent study by Santamaria et al.

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

Rabies transmitted from vampires to cattle: An overview.

PLoS One

January 2025

Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States of America.

Rabies is a zoonotic infectious disease of global distribution that impacts human and animal health. In rural Latin America, rabies negatively impacts food security and the economy due to losses in livestock production. The common vampire bat, Desmodus rotundus, is the main reservoir and transmitter of rabies virus (RABV) to domestic animals in Latin America.

View Article and Find Full Text PDF

We have carried out spectral analysis of coronavirus disease 2019 (COVID-19) notifications in all 47 prefectures in Japan. The results confirm that the power spectral densities (PSDs) of the data from each prefecture show exponential characteristics, which are universally observed in the PSDs of time series generated by nonlinear dynamical systems, such as the susceptible/exposed/infectious/recovered (SEIR) epidemic model. The exponential gradient increases with the population size.

View Article and Find Full Text PDF

Introduction: Respiratory syncytial virus (RSV) is the leading cause of hospitalization among US infants. Characterizing service utilization during infant RSV hospitalizations may provide important information for prioritizing resources and interventions.

Objective: The objective of this study was to describe the procedures and services received by infants hospitalized during their first RSV episode in their first RSV season, in addition to what proportion of infants died during this hospitalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!