Synthesis of Metal Nanostructures Using Supercritical Carbon Dioxide: A Green and Upscalable Process.

Small

Institut für Technische Thermodynamik and Kältetechnik, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 21, 76131, Karlsruhe, Germany.

Published: December 2020

Metallic nanostructures have numerous applications as industrial catalysts and sensing platforms. Supercritical carbon dioxide (scCO ) is a green medium for the scalable preparation of nanomaterials. Supercritical fluid reactive deposition (SFRD) and other allied techniques can be employed for the mass production of metal nanostructures for various applications. The present article reviews the recent reports on the scCO -assisted preparation of zero-valent metal nanomaterials and their applications. A brief description of the science of pure supercritical fluids, especially CO , and the basics of binary mixtures composed of scCO and a low volatile substance, e.g., an organometallic precursor are presented. The benefits of using scCO for preparing metal nanomaterials, especially as a green solvent, are also being highlighted. The experimental conditions that are useful for the tuning of particle properties are reviewed thoroughly. The range of modifications to the classical SFRD methods and the variety of metallic nanomaterials that can be synthesized are reviewed and presented. Finally, the broad ranges of applications that are reported for the metallic nanomaterials that are synthesized using scCO are reviewed. A brief summary along with perspectives about future research directions is also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202001972DOI Listing

Publication Analysis

Top Keywords

metal nanostructures
8
supercritical carbon
8
carbon dioxide
8
metal nanomaterials
8
metallic nanomaterials
8
nanomaterials synthesized
8
scco
5
nanomaterials
5
synthesis metal
4
supercritical
4

Similar Publications

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr.

View Article and Find Full Text PDF

Liquid Active Surface Growth: Explaining the Symmetry Breaking in Liquid Nanoparticles.

ACS Nano

January 2025

Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China.

In our previous studies of metal nanoparticle growth, we have come to realize that the dynamic interplay between ligand passivation and metal deposition, as opposed to static facet control, is responsible for focused growth at a few active sites. In this work, we show that the same underlying principle could be applied to a very different system and explain the abnormal growth modes of liquid nanoparticles. In such a liquid active surface growth (LASG), the interplay between droplet expansion and simultaneous silica shell encapsulation gives rise to an active site of growth, which eventually becomes the long necks of nanobottles.

View Article and Find Full Text PDF

Targeting CHEK1: Ginsenosides-Rh2 and Cu2O@G-Rh2 nanoparticles in thyroid cancer.

Cell Biol Toxicol

January 2025

Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China.

Thyroid cancer (THCA) is an increasingly common malignant tumor of the endocrine system, with its incidence rising steadily in recent years. For patients who experience recurrence or metastasis, treatment options are relatively limited, and the prognosis is poor. Therefore, exploring new therapeutic strategies has become particularly urgent.

View Article and Find Full Text PDF

Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!