Endothelial cells (ECs) are an active component of the immune system and interact directly with inflammatory cytokines. While ECs are known to be polarized cells, the potential role of apicobasal polarity in response to inflammatory mediators has been scarcely studied. Acute inflammation is vital in maintaining healthy tissue in response to infection; however, chronic inflammation can lead to the production of systemic inflammatory cytokines and deregulated leukocyte trafficking, even in the absence of a local infection. Elevated levels of cytokines in circulation underlie the pathogenesis of sepsis, the leading cause of intensive care death. Because ECs constitute a key barrier between circulation (luminal interface) and tissue (abluminal interface), we hypothesize that ECs respond differentially to inflammatory challenge originating in the tissue versus circulation as in local and systemic inflammation, respectively. To begin this investigation, we stimulated ECs abluminally and luminally with the inflammatory cytokine tumor necrosis factor alpha (TNF-α) to mimic a key feature of local and systemic inflammation, respectively, in a microvascular mimetic (μSiM-MVM). Polarized IL-8 secretion and polymorphonuclear neutrophil (PMN) transmigration were quantified to characterize the EC response to luminal versus abluminal TNF-α. We observed that ECs uniformly secrete IL-8 in response to abluminal TNF-α and is followed by PMN transmigration. The response to abluminal treatment was coupled with the formation of ICAM-1-rich membrane ruffles on the apical surface of ECs. In contrast, luminally stimulated ECs secreted five times more IL-8 into the luminal compartment than the abluminal compartment and sequestered PMNs on the apical EC surface. Our results identify clear differences in the response of ECs to TNF-α originating from the abluminal versus luminal side of a monolayer for the first time and may provide novel insight into future inflammatory disease intervention strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671990 | PMC |
http://dx.doi.org/10.1093/intbio/zyaa022 | DOI Listing |
Retinopathy of prematurity (ROP) and diabetic retinopathy (DR) are ocular disorders in which a loss of retinal vasculature leads to ischemia followed by a compensatory neovascularization response. In mice, this is modeled using oxygen-induced retinopathy (OIR), whereby neonatal animals are transiently housed under hyperoxic conditions that result in central retina vessel regression and subsequent neovascularization. Using endothelial cell (EC)-specific gene deletion, we found that loss of two ETS-family transcription factors, ERG and FLI1, led to regression of OIR-induced neovascular vessels but failed to improve visual function, suggesting that relevant retinal damage occurs prior to and independently of neovascularization.
View Article and Find Full Text PDFExp Mol Med
January 2025
Department of Physiology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
Hemophilia A (HA) is caused by mutations in coagulation factor VIII (FVIII). Genome editing in conjunction with patient-derived induced pluripotent stem cells (iPSCs) is a promising cell therapy strategy, as it replaces dysfunctional proteins resulting from genetic mutations with normal proteins. However, the low expression level and short half-life of FVIII still remain significant limiting factors in the efficacy of these approaches in HA.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland. Electronic address:
Due to the increasing prevalence of depressive and anxiety disorders in youth, a growing interest in the endocannabinoid system (ECS) as a potential alternative target point for treatment arised. This study aimed to investigate whether chronic administration of escitalopram reverses behavioral changes induced by maternal separation in male adolescent Wistar rats and explore the corresponding neurochemical changes in the ECS. The pups were separated from their dams for 360 min daily from postnatal day (PND) 2 until PND 15.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Universidade Federal de Santa Maria, Departamento de Física, Santa Maria, RS, 97105-900, BRAZIL.
The study of emerging contaminants (ECs) in water resources has garnered significant attention due to their potential risks to human health and the environment. This review examines the contribution from computational approaches, focusing on the application of machine learning (ML) and molecular dynamics (MD) simulations to understand and optimize experimental applications of ECs adsorption on carbon-based nanomaterials. Condensed matter physics plays a crucial role in this research by investigating the fundamental properties of materials at the atomic and molecular levels, enabling the design and engineering of materials optimized for contaminant removal.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
Background: Systemic diseases are often associated with endothelial cell (EC) dysfunction. A key function of ECs is to maintain the barrier between the blood and the interstitial space. The integrity of the endothelial cell barrier is maintained by VE-Cadherin homophilic interactions between adjacent cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!