A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Marian Plum Fruit Quality without Environmental Condition Impact by Handheld Visible-Near-Infrared Spectroscopy. | LitMetric

Handheld near-infrared spectroscopy was used to study the effect of integration time and wavelength selection on predicting marian plum quality including soluble solids content (SSC), the potential of hydrogen ion (pH), and titratable acidity (TA). For measurements representing actual conditions, the on-tree fruits were scanned under in-field conditions. The assumption was that the robust model might be achieved when the models were developed under actual conditions. The results of the main effect test show that the integration time did not statistically affect SSC, pH, and TA predictions (-value > 0.05) and the wavelength range had a significant impact on prediction (-value < 0.01). An integration time of 30 ms coupled with a wavelength range of 670-1000 nm was the optimal conditions for the SSC prediction, while an integration time of 20 ms with 670-1000 nm wavelength was optimal for pH and TA prediction because of the lowest root-mean-square error of cross-validation (RMSECV). The optimal models for SSC, pH, and TA could be improved using spectral pre-processing of multiplicative scatter correction. The effective models for SSC, pH, and TA improved and reported the coefficients of determination ( ) and root-mean-square errors of prediction (RMSEP) of 0.66 and 0.86 °Brix; 0.79 and 0.15; and 0.71 and 1.91%, respectively. The SSC, pH, and TA models could be applied for quality assurance. These models benefit the orchardist for on-tree measurement before harvesting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643141PMC
http://dx.doi.org/10.1021/acsomega.0c03203DOI Listing

Publication Analysis

Top Keywords

integration time
16
predicting marian
8
marian plum
8
actual conditions
8
wavelength range
8
models ssc
8
ssc improved
8
ssc
6
models
5
plum fruit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!