A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Value of Enhanced MR Radiomics in Estimating the IDH1 Genotype in High-Grade Gliomas. | LitMetric

Background: The prognosis of IDH1-mutant glioma is significantly better than that of wild-type glioma, and the preoperative identification of IDH mutations in glioma is essential for the formulation of surgical procedures and prognostic assessment.

Purpose: To explore the value of a radiomic model based on preoperative-enhanced MR images in the assessment of the IDH1 genotype in high-grade glioma.

Materials And Methods: A retrospective analysis was performed on 182 patients with high-grade glioma confirmed by surgical pathology between December 2012 and January 2019 in our hospital with complete preoperative brain-enhanced MR images, including 79 patients with an IDH1 mutation (45 patients with WHO grade III and 34 patients with WHO grade IV) and 103 patients with wild-type IDH1 (33 patients with WHO grade III and 70 patients with WHO grade IV). Patients were divided into a primary dataset and a validation dataset at a ratio of 7 : 3 using a stratified random sampling; radiomic features were extracted using A.K. (Analysis Kit, GE Healthcare) software and were initially reduced using the Kruskal-Wallis and Spearman analyses. Lasso was finally conducted to obtain the optimized subset of the feature to build the radiomic model, and the model was then tested with cross-validation. ROC (receiver operating characteristic curve) analysis was performed to evaluate the performance of the model.

Results: The radiomic model showed good discrimination in both the primary dataset (AUC = 0.87, 95% CI: 0.754 to 0.855, ACC = 0.798, sensitivity = 85.5%, specificity = 75.4%, positive predictive value = 0.734, and negative predictive value = 0.867) and the validation dataset (AUC = 0.86, 95% CI: 0.690 to 0.913, ACC = 0.789, sensitivity = 91.3%, specificity = 69.0%, positive predictive value = 0.700, and negative predictive value = 0.909).

Conclusion: The radiomic model, based on the preoperative-enhanced MR, can effectively predict the IDH1 genotype in high-grade glioma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604586PMC
http://dx.doi.org/10.1155/2020/4630218DOI Listing

Publication Analysis

Top Keywords

radiomic model
16
patients grade
16
idh1 genotype
12
genotype high-grade
12
model based
8
based preoperative-enhanced
8
analysis performed
8
patients
8
high-grade glioma
8
grade iii
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!