AI Article Synopsis

  • Circular RNAs (circRNAs) are non-coding RNAs that form closed loops and can regulate gene expression; their dysregulation has been linked to various cancers, including lung adenocarcinoma (LUAD).
  • Recent research utilized the MiOncoCirc database to analyze circRNA expression in LUAD, identifying seven circRNAs, with some (like circCDR1-AS, circMAN1A2, and circHIPK3) linked to poor survival and tumor progression.
  • The article emphasizes the need for further investigation into the roles and mechanisms of these circRNAs in LUAD to better understand their impact on cancer development.

Article Abstract

Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs (ncRNAs) with a structure of covalently closed continuous loops, which can regulate gene expression by acting as a microRNA sponge or through other mechanisms. Recent studies have identified that the expression of candidate circRNAs are dysregulated in various tumors and hence are considered as promising diagnostic or therapeutic targets across cancer types. However, the expression and function of circRNAs in lung adenocarcinoma (LUAD) remains unclear. In this article, we investigated the expression of circRNAs in LUAD via MiOncoCirc, which is the first and comprehensive database characterizing circRNAs across >2,000 cancer samples using an exome capture RNA sequencing. We identified seven abnormally expressed circRNAs in LUAD, including circCDR1-AS, circHIPK3, circFNDC3B, circPCMTD1, circRHOBTB3, circFAM13B, and circMAN1A2, as well as conducted a literature review about the function and features of these circRNAs. Previous studies have demonstrated that circCDR1-AS, circMAN1A2, and circHIPK3 were upregulated and significantly correlated with a poor survival, or promoted the tumor progression in lung cancer, whereas other circRNAs have not been fully explored. Besides, we reviewed all the publications regarding circRNAs and LUAD, and noticed that the dysregulation of these circRNAs impacts the development of LUAD through a variety of regulatory mechanisms. In conclusion, the underlying mechanisms of aberrant expression and functions of circRNAs in LUAD are worthy of being further investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581697PMC
http://dx.doi.org/10.3389/fonc.2020.523342DOI Listing

Publication Analysis

Top Keywords

circrnas luad
16
circrnas
11
lung adenocarcinoma
8
literature review
8
luad
6
expression
5
circular rna
4
rna signature
4
signature lung
4
adenocarcinoma mioncocirc
4

Similar Publications

Background: Circular RNAs play an important role in regulating lung adenocarcinoma (LUAD). Bioinformatics analysis identified circ_0015278 as differentially expressed in LUAD. However, the biological mechanism of circ_0015278 in LUAD has not been fully clarified, especially in ferroptosis.

View Article and Find Full Text PDF

Background: Tyrosine kinase inhibitors (TKIs) are the first-line therapy for patients with non-small cell lung cancer (NSCLC) with sensitized mutations in the epidermal growth factor receptor (). However, resistance to TKIs is a major clinical issue that affects the survival and prognosis of the patients, with the mechanisms underlying this resistance remaining elusive. Circular RNAs (circRNAs) are a class of single-stranded, covalently closed RNA molecules, which are generated from pre-messenger RNAs (mRNAs) through back splicing.

View Article and Find Full Text PDF

Circular RNAs in cancer: roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas.

Discov Oncol

January 2025

Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.

The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.

View Article and Find Full Text PDF

Fusion circRNA F-circEA1 facilitates EML4-ALK1 positive lung adenocarcinoma progression through the miR-4673/SMAD4/ADAR1 axis.

Cell Signal

December 2024

Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Jiangsu Province, China. Electronic address:

Circular RNA (circRNA) can sponge miRNA participate in the tumorigenesis and progression of various cancers. We substantiate for the first time that the fusion circular RNA (F-circRNA) F-circEA1 is involved in driving the echinoderm microtubule associated-protein like 4-anaplastic lymphoma kinase variant 1-positive (EML4-ALK1) lung adenocarcinoma (LUAD) progression and the expression of the parental gene EML4-ALK1, molecular mechanisms of F-circEA1 in the EML4-ALK1 LUAD remain unknown. Bioinformatics analysis showed that only miR-4673 can bind to F-circEA1 and bind to EML4-ALK1 3'-UTR to regulate the expression of EML4-ALK1.

View Article and Find Full Text PDF

Identification of circRNA-miRNA-mRNA networks to explore underlying mechanism in lung cancer.

Health Inf Sci Syst

December 2025

Medical School, Kunming University of Science & Technology, #727 Jing Ming Nan Road, Chenggong County, Kunming, 650500 Yunnan China.

Background: Circular RNAs (circRNAs) are involved in the occurrence and development of various tumors. CircRNAs can act as competing endogenous RNAs (ceRNAs), which are important regulatory networks, by regulating microRNAs (miRNAs). However, the effects of ceRNA networks on lung cancer (LC), especially the circRNA-miRNA-mRNA regulatory network, remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!