A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A deep learning-based social distance monitoring framework for COVID-19. | LitMetric

A deep learning-based social distance monitoring framework for COVID-19.

Sustain Cities Soc

Department of Information and Communication Engineering, Yeungnam University, South Korea.

Published: February 2021

The ongoing COVID-19 corona virus outbreak has caused a global disaster with its deadly spreading. Due to the absence of effective remedial agents and the shortage of immunizations against the virus, population vulnerability increases. In the current situation, as there are no vaccines available; therefore, social distancing is thought to be an adequate precaution (norm) against the spread of the pandemic virus. The risks of virus spread can be minimized by avoiding physical contact among people. The purpose of this work is, therefore, to provide a deep learning platform for social distance tracking using an overhead perspective. The framework uses the YOLOv3 object recognition paradigm to identify humans in video sequences. The transfer learning methodology is also implemented to increase the accuracy of the model. In this way, the detection algorithm uses a pre-trained algorithm that is connected to an extra trained layer using an overhead human data set. The detection model identifies peoples using detected bounding box information. Using the Euclidean distance, the detected bounding box centroid's pairwise distances of people are determined. To estimate social distance violations between people, we used an approximation of physical distance to pixel and set a threshold. A violation threshold is established to evaluate whether or not the distance value breaches the minimum social distance threshold. In addition, a tracking algorithm is used to detect individuals in video sequences such that the person who violates/crosses the social distance threshold is also being tracked. Experiments are carried out on different video sequences to test the efficiency of the model. Findings indicate that the developed framework successfully distinguishes individuals who walk too near and breaches/violates social distances; also, the transfer learning approach boosts the overall efficiency of the model. The accuracy of 92% and 98% achieved by the detection model without and with transfer learning, respectively. The tracking accuracy of the model is 95%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603992PMC
http://dx.doi.org/10.1016/j.scs.2020.102571DOI Listing

Publication Analysis

Top Keywords

social distance
20
video sequences
12
transfer learning
12
distance
8
accuracy model
8
detection model
8
detected bounding
8
bounding box
8
distance threshold
8
efficiency model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!