Despite the progress that has been made in diagnosing and treating oral cancers, they continue to have a poor prognosis, with a 5-year overall survival rate of approximately 50%. We have intensively studied the anticancer properties of capsaicin (a burning constituent of chili pepper), mainly focusing on its apoptotic properties. Here, we investigated the interplay between apoptosis and autophagy in capsaicin-treated oral cancer cells with either functional or mutant p53. Cytotoxicity was determined by cell impedance measurements and WST-1 assays, and cell death was analyzed by flow cytometry. The interaction between capsaicin and tumor-associated NADH oxidase (tNOX, ENOX2) was studied by cellular thermal shift assay (CETSA) and isothermal dose-response fingerprint curves (ITDRF). Our CETSA data suggested that capsaicin directly engaged with tNOX, resulting in its degradation through the ubiquitin-proteasome and the autophagy-lysosome systems. In p53-functional SAS cells, capsaicin induced significant cytotoxicity via autophagy but not apoptosis. Given that tNOX catalyzes the oxidation of NADH, the direct binding of capsaicin to tNOX also inhibited the NAD-dependent activity of sirtuin 1 (SIRT1) deacetylase, we found that capsaicin-induced autophagy involved enhanced acetylation of ULK1, which is a key player in autophagy activation, possibly through SIRT1 inhibition. In p53-mutated HSC-3 cells, capsaicin triggered both autophagy and apoptosis. In this case, autophagy occurred before apoptosis: during this early stage, autophagy seemed to inhibit apoptosis; at a later stage, in contrast, autophagy appeared to be essential for the induction of apoptosis. Western blot analysis revealed that the reduction in tNOX and SIRT1 associated with enhanced ULK1 acetylation and c-Myc acetylation, which in turn, reactivated the TRAIL pathway, ultimately leading to apoptosis. Taken together, our data highlight the potential value of leveraging capsaicin and tNOX in therapeutic strategies against oral cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642647PMC

Publication Analysis

Top Keywords

oral cancer
12
autophagy
9
capsaicin
8
tnox enox2
8
apoptosis
8
p53-mutated hsc-3
8
hsc-3 cells
8
p53-functional sas
8
cancer cells
8
cells capsaicin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!