Continuous electrical lysis of cancer cells in a microfluidic device with passivated interdigitated electrodes.

Biomicrofluidics

Micro Nano Bio-Fluidics Unit, Fluid Systems Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.

Published: November 2020

Cell lysis is a critical step in genomics for the extraction of cellular components of downstream assays. Electrical lysis (EL) offers key advantages in terms of speed and non-interference. Here, we report a simple, chemical-free, and automated technique based on a microfluidic device with passivated interdigitated electrodes with DC fields for continuous EL of cancer cells. We show that the critical problems in EL, bubble formation and electrode erosion that occur at high electric fields, can be circumvented by passivating the electrodes with a thin layer (∼18 m) of polydimethylsiloxane. We present a numerical model for the prediction of the transmembrane potential (TMP) at different coating thicknesses and voltages to verify the critical TMP criterion for EL. Our simulations showed that the passivation layer results in a uniform electric field in the electrode region and offers a TMP in the range of 5-7 V at an applied voltage of 800 V, which is well above the critical TMP (∼1 V) required for EL. Experiments revealed that lysis efficiency increases with an increase in the electric field (E) and residence time (t): a minimum E ∼ 10 V/m and t∼ 1.0 s are required for efficient lysis. EL of cancer cells is demonstrated and characterized using immunochemical staining and compared with chemical lysis. The lysis efficiency is found to be ∼98% at E = 4 × 10 V/m and t= 0.72 s. The efficient recovery of genomic DNA via EL is demonstrated using agarose gel electrophoresis, proving the suitability of our method for integration with downstream on-chip assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609135PMC
http://dx.doi.org/10.1063/5.0026046DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
electrical lysis
8
lysis cancer
8
microfluidic device
8
device passivated
8
passivated interdigitated
8
interdigitated electrodes
8
critical tmp
8
electric field
8
lysis efficiency
8

Similar Publications

Exosomal circ_0006896 promotes AML progression via interaction with HDAC1 and restriction of antitumor immunity.

Mol Cancer

January 2025

Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.

Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.

Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.

View Article and Find Full Text PDF

The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.

View Article and Find Full Text PDF

Skin epithelial stem cells correct aberrancies induced by oncogenic mutations. Oncogenes invoke different strategies of epithelial tolerance; while wild-type cells outcompete β-catenin-gain-of-function (βcatGOF) cells, Hras cells outcompete wild-type cells. Here we ask how metabolic states change as wild-type stem cells interface with mutant cells and drive different cell-competition outcomes.

View Article and Find Full Text PDF

Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity.

View Article and Find Full Text PDF

KRAS-specific inhibitors have shown promising antitumor effects, especially in non-small cell lung cancer, but limited efficacy in colorectal cancer (CRC) patients. Recent studies have shown that EGFR-mediated adaptive feedback mediates primary resistance to KRAS inhibitors, but the other resistance mechanisms have not been identified. In this study, we investigated intrinsic resistance mechanisms to KRAS inhibitors using patient-derived CRC cells (CRC-PDCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!