Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
History shows that the infectious disease (COVID-19) can stun the world quickly, causing massive losses to health, resulting in a profound impact on the lives of billions of people, from both a safety and an economic perspective, for controlling the COVID-19 pandemic. The best strategy is to provide early intervention to stop the spread of the disease. In general, Computer Tomography (CT) is used to detect tumors in pneumonia, lungs, tuberculosis, emphysema, or other pleura (the membrane covering the lungs) diseases. Disadvantages of CT imaging system are: inferior soft tissue contrast compared to MRI as it is X-ray-based Radiation exposure. Lung CT image segmentation is a necessary initial step for lung image analysis. The main challenges of segmentation algorithms exaggerated due to intensity in-homogeneity, presence of artifacts, and closeness in the gray level of different soft tissue. The goal of this paper is to design and evaluate an automatic tool for automatic COVID-19 Lung Infection segmentation and measurement using chest CT images. The extensive computer simulations show better efficiency and flexibility of this end-to-end learning approach on CT image segmentation with image enhancement comparing to the state of the art segmentation approaches, namely GraphCut, Medical Image Segmentation (MIS), and Watershed. Experiments performed on COVID-CT-Dataset containing (275) CT scans that are positive for COVID-19 and new data acquired from the EL-BAYANE center for Radiology and Medical Imaging. The means of statistical measures obtained using the accuracy, sensitivity, F-measure, precision, MCC, Dice, Jacquard, and specificity are 0.98, 0.73, 0.71, 0.73, 0.71, 0.71, 0.57, 0.99 respectively; which is better than methods mentioned above. The achieved results prove that the proposed approach is more robust, accurate, and straightforward.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605758 | PMC |
http://dx.doi.org/10.1016/j.patcog.2020.107747 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!