Design of carbon-based adsorbents derived from industrial lignin with superior phosphate adsorption performance is of great significance, yet limited researches have been reported. Here, we report a MgO-functionalized lignin-based bio-charcoal (MFLC) as an efficient adsorbent for phosphate removal. The obtained MgO nanoparticles were dispersed homogeneously on MFLC with particle size of 50-100 nm and higher loading content (28.41%). Benefiting from the favorable morphology of MgO nanoparticles, the MFLC exhibits excellent regeneration ability for phosphate adsorption, which can be applied in a wide range of pH values (2-10). The maximum adsorption capacity could reach to 906.82 mg g for phosphate. Interestingly, the MFLC shows extremely high adsorption activity in the low concentration of phosphate (2 mg P L), and its phosphate removal efficiency achieves 99.76%. Furthermore, the results also indicated that the higher loading content of MgO together with smaller particle size can effectively enhance the phosphate adsorption activity of MFLC. The adsorption mechanism revealed that the adsorption of phosphate on the surface of MFLC belongs to single-layer chemisorption, and ligand exchange plays a crucial role during adsorption/desorption. This work not only develops a new strategy for the preparation of high-efficiency carbon-based adsorbents, but also facilitates the value-added utilization of industrial lignin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.143217 | DOI Listing |
Int J Biol Macromol
January 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:
The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Chem-Biosensing of Anhui Province, Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:
Adsorption and biodegradation are two important means to remove the pollutants from the environment, but how to combine them and improve the catalytic performance and stability of free enzyme are facing great challenges. Herein, lipase from Candida rugosa (CRL) was immobilized into bimetallic ZnCo-MOF by biomineralization, which not only significantly improved the catalytic activity and stability of CRL but also endowed it with excellent reusability. Furthermore, CRL@ZnCo-MOF established a synergetic system of combined adsorption and enzymatic degradation for the sustainable removal of dibutyl phthalate (DBP) in actual water environment.
View Article and Find Full Text PDFFood Chem
December 2024
School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, China. Electronic address:
The large-scale production of glycyrrhizic acid inevitably generates a large amount of licorice residues waste, which contains a wealth of active ingredients, especially glabridin, a natural preservative. However, traditional extraction methods for glabridin are often limited by bottlenecks such as time-consuming, inefficient, and insufficient specificity. To overcome these challenges, this study innovatively introduced 2-phenylimidazole as a functional monomer by computer simulations and successfully developed magnetic molecularly imprinted polymers (MMIPs) for glabridin.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China. Electronic address:
Wheat bran-soluble dietary fibre (WB-SDF) is known for its hypoglycaemic properties and its potential to control postprandial blood glucose levels in individuals with hyperglycaemia. However, the digestive process may alter its glucose-lowering potential. This study investigated the effects of in vitro simulated digestion on the hypoglycaemic efficacy of WB-SDF.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China. Electronic address:
The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO) electrodes enhanced with oxygen vacancy (O) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!