Hypothesis: Surfactants have been widely used as adjuvants in agri-sprays to enhance the solubility of pesticides in foliar spray deposits and their mobility through leaf cuticles. Previously, we have characterised pesticide solubilisation in nonionic surfactant micelles, but what happens when pesticides become solubilised in anionic, cationic and zwitterionic and their mixtures with nonionic surfactants remain poorly characterised.
Experiments: To facilitate characterisations by SANS and NMR, we used nonionic surfactant hexaethylene glycol monododecyl ether (CE), anionic sodium dodecylsulphate (SDS), cationic dodecyltrimethylammonium bromide (DTAB) and zwitterionic dodecylphosphocholine (CPC) as model adjuvant systems to solubilise 3 pesticides, Cyprodinil (CP), Azoxystrobin (AZ) and Difenoconazole (DF), representing different structural features. The investigation focused on the influence of solubilisates in driving changes to the micellar nanostructures in the absence or presence of electrolytes. NMR and NOESY were applied to investigate the solubility and location of each pesticide in the micelles. SANS was used to reveal subtle changes to the micellar structures due to pesticide solubilisation with and without electrolytes.
Findings: Unlike nonionic surfactants, the ionic and zwitterionic surfactant micellar structures remain unchanged upon pesticide solubilisation. Electrolytes slightly elongate the ionic surfactant micelles but have no effect on nonionic and zwitterionic surfactants. Pesticide solubilisation could alter the structures of the binary mixtures of ionic/zwitterionic and ionic/nonionic micelles by causing elongation, shell shrinkage and dehydration, with the exact alteration being determined by the molar ratio in the mixture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.10.083 | DOI Listing |
J Chromatogr A
December 2024
Univ Rouen Normandie, FR3038, SMS, UR 3233, F-76000 Rouen, France. Electronic address:
In this study, a novel imidazolium-based ionic liquid (IL) coating was developed for stir bar sorptive extraction (SBSE) using a sol-gel method. The effects of different counterions, conditioning temperatures and polymer compositions were investigated. The stir bar with bis((trifluoromethyl)sulfonyl) amide 1-butyl-3-(3-(triethoxysilyl)propyl)-1H-imidazol-3-ium showed good mechanical and thermal stability with high resistance to water solubilization.
View Article and Find Full Text PDFCurr Res Microb Sci
June 2024
Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, U.P. 211007, India.
Wastewater contains various emerging contaminants, including heavy metals, residues of pesticides, and pharmaceuticals. Therefore, irrigation with wastewater can enhance heavy metal contamination in soil and adversely affect plant growth. To mitigate this problem, plant growth-promoting bacteria (PGPR) can improve plant growth under heavy metal stress.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Institute BIOTECMED/Department of Genetics, University of Valencia, Burjassot, Spain.
Int J Biol Macromol
December 2024
Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea. Electronic address:
Anal Bioanal Chem
November 2024
Department of Chemistry, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy.
The increasing use of chiral agrochemicals sold as racemic formulations raises concern for the negative impacts that inactive enantiomers can have on aquatic life and human health. The present work just focuses on the determination of ten chiral pesticides in river water samples by applying a ferrofluid-based microextraction followed by their stereoselective liquid chromatography analysis. To develop the ferrofluid, magnetite nanoparticles were prepared and coated with oleic acid and then dispersed in a hydrophobic natural deep eutectic solvent (NaDES), composed of L-menthol and thymol (1:1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!