Upon fertilization, oocytes transform into totipotent and pluripotent cleavage stage cells through the maternal-to-zygotic transition (MZT), which is regulated by maternal factors and zygotic genome activation (ZGA). Here, we investigated the in vivo function of 16 genes expressed with strong biases in oocytes and cleavage stage embryos by generating knockout (KO) mice. These MZT-associated genes are conserved across many mammalian species and include five multicopy gene family genes: the Nlrp9, Khdc1, Rfpl4, Trim43, and Zscan5 genes. Intercrosses between female KO and male KO mice, including Nlrp9a/b/c triple KO (TKO), Khdc1a/b/c TKO, Rfpl4a/b double KO (DKO), Trim43a/b/c TKO, and Zscan5b KO mice led to the birth to healthy offspring that in turn produced healthy offspring. Our study not only demonstrated that these MZT-associated genes are not essential for mouse development, but also provides valuable resources for analyzing the functions of these genes in other genetic backgrounds, in the presence of stressors, and under pathogenic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!