A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stronger Adsorption of Phosphorothioate DNA Oligonucleotides on Graphene Oxide by van der Waals Forces. | LitMetric

Stronger Adsorption of Phosphorothioate DNA Oligonucleotides on Graphene Oxide by van der Waals Forces.

Langmuir

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Published: November 2020

Finding DNA sequences that can adsorb strongly on nanomaterials is critical for bioconjugate and biointerface chemistry. In most previous work, unmodified DNA with a phosphodiester backbone (PO DNA) were screened or selected for adsorption on inorganic surfaces. In this work, the adsorption of phosphorothioate (PS)-modified DNA (PS DNA) on graphene oxide (GO) is studied. By use of fluorescently labeled oligonucleotides as probes, all the tested PS DNA strands are adsorbed more strongly on GO compared to the PO DNA of the same sequence. The adsorption mechanism is probed by washing the adsorbed DNA with proteins, surfactants, and urea. Molecular dynamics simulations show that van der Waals forces are responsible for the tighter adsorption of PS DNA. Polycytosine (poly-C) DNA, in general, has a high affinity for the GO surface, and PS poly-C DNA can adsorb even stronger, making it an ideal anchoring sequence on GO. With this knowledge, noncovalent functionalization of GO with a diblock DNA is demonstrated, where a PS poly-C block is used to anchor on the surface. This conjugate achieves better hybridization than the PO DNA of the same sequence for hybridization with the complementary DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c02761DOI Listing

Publication Analysis

Top Keywords

dna
15
adsorption phosphorothioate
8
graphene oxide
8
van der
8
der waals
8
waals forces
8
dna sequence
8
poly-c dna
8
stronger adsorption
4
phosphorothioate dna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!