Afterglow Properties and Trap-Depth Control in ZrO:Ti, ( = Ca, Y, Nb, W).

Inorg Chem

Department of Pure and Applied Chemistry, Faculty of Science and Technology, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan.

Published: December 2020

AI Article Synopsis

  • Ti-doped ZrO is a stable luminescent material, and co-doping with various cations can enhance its afterglow properties, yet limited research has focused on ZrO:Ti systems.
  • The study synthesized different co-doped samples, finding that a 0.09 mol % Ti concentration provided the best afterglow duration due to optimized ratios of luminescent centers and co-dopants.
  • The varying emission decay curves indicated multiple trap mechanisms influenced by the co-dopants' valence states and electrostatic interactions, with high-valent cations resulting in longer afterglow effects.

Article Abstract

Ti-doped ZrO is a chemically stable and persistent luminescence material. Doping and co-doping is an effective approach for improving the afterglow properties of phosphors, but few studies have investigated the co-doping of ZrO:Ti systems. This study aimed to synthesize ZrO:Ti, ( = Ca, Y, Ti single-doped, Nb, W) and evaluate the luminescent properties of the resulting materials, with a specific focus on the relationship between trap depth and the valence state of the co-doped cation. The ratio of the luminescent center to co-doped ion was optimized using the combinatorial approach, where 0.09 mol % Ti led to the best afterglow duration. The emission decay curves of each co-doped sample differed significantly, where a change in curvature was observed in the Ti single-doped and W co-doped samples due to the presence of multiple traps. From the thermoluminescence glow curves, the trap originating in an oxygen vacancy with a peak at around 270 K was observed. The trap depth was dependent on electrostatic interactions between the trapped electrons and their surrounding cations, and thus related to the valence of the co-dopant. Overall, co-doping with high-valent cations led to improved afterglow duration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.0c01578DOI Listing

Publication Analysis

Top Keywords

afterglow properties
8
trap depth
8
afterglow duration
8
afterglow
4
properties trap-depth
4
trap-depth control
4
control zroti
4
zroti ti-doped
4
ti-doped zro
4
zro chemically
4

Similar Publications

Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.

View Article and Find Full Text PDF

Modulating room-temperature phosphorescence of D-π-A luminogens via methyl substitution, positional isomerism, and host-guest doping.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Guangxi Key Laboratory of Electrochemical and Magneto-chemical Function Materia, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

Organic room-temperature phosphorescence (RTP) luminogens have showed significant potential in the fields of diagnostics, sensing, and information encryption. However, it is difficult to achieve high RTP yield (Φ) and long RTP lifetime simultaneously. By methyl substitution, positional isomerism, and host-guest doping, three new D-π-A type luminogens named as TBTDA, 2M-TBTDA, and 3M-TBTDA were designed and synthesized, whose RTP properties were tuned and optimized.

View Article and Find Full Text PDF

Leveraging Multivalent Assembly towards High-Temperature Liquid-Phase Phosphorescence.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.

High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy to achieve high-temperature liquid-phase phosphorescence (HTLP). The supramolecular assembly of multivalent modules leads to extremely robust hydrogen-bonding networks, which firmly immobilize the organic phosphors and protect triplet excitons from annihilation in high-temperature polar media, resulting in excellent HTLP emission.

View Article and Find Full Text PDF

Regioisomeric π-Extended Nanographene with Long-Lived Phosphorescence Afterglow.

Angew Chem Int Ed Engl

January 2025

Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411008, India.

The cutouts of graphene sheets, particularly those with a nonplanar topology, present vast opportunities for advancement. Even a slight deviation from the planar structure can lead to intriguing (chiro)optical features for helically twisted nanographenes. In this context, we introduce two regioisomeric π-extended nanographenes that exhibit distinct excited-state characteristics.

View Article and Find Full Text PDF

Long afterglow hybrid nanoplatform for integrated NIR-Ⅱ imaging diagnosis and triple-synergistic treatment of choroidal melanoma.

Talanta

December 2024

The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

The key to the treatment of choroidal melanoma (CM) is to improve diagnostic efficiency and find a high-performance treatment to replace the traditional treatment of radiotherapy and enucleation. In this paper, for the first time, long afterglow luminescence material was applied to the integrated diagnosis and treatment of eyes, with its unique advantages in photoluminescence and afterglow luminescence to solve the bottleneck problem of real-time irradiation required for photothermal and photodynamic therapy (PTT and PDT). Based on the excellent photoluminescence and afterglow properties of ZnGaGeO:CrYbEr (ZGGO) nanoparticles, a nanoplatform ZGGO@Au@UiO-66@ZnPc:Dox-FA (GAUZD-FA) for NIR-Ⅱ imaging and triple-synergistic therapy (PTT, PDT and sustained-release drug) was constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!