Investigation of different electrochemical cleaning methods on contaminated healing abutments in vitro: an approach for metal surface decontamination.

Int J Implant Dent

Department of Oral Implantology and Regenerative Dental Medicine, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.

Published: November 2020

Background: To evaluate the effects of electrolysis on cleaning the contaminated healing abutment surface and to detect the optimal condition for cleaning the contaminated healing abutment.

Methods: Ninety healing abutments removed from patients were placed in 1% sodium dodecyl sulfate solution and randomly divided for electrolysis with 7.5% sodium bicarbonate in the following three different apparatuses (N = 30): two stainless steel electrodes (group I), a copper electrode and a carbon electrode (group II), and two carbon electrodes (group III). The samples were placed on cathode or anode with different electric current (0.5, 1, and 1.5 A) under constant 10 V for 5 min. Electrolyte pH before and after electrolysis were measured. Then, the samples were stained with phloxine B and photographed. The proportion of stained areas was calculated. The surface was examined with a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS).

Results: Electrolyte pH decreased after electrolysis at 1 A and 1.5 A in group I and II. Applying cathode at 1 A in group III, the amount of residual contamination was the lowest in all the conditions examined in the present study. SEM images revealed that applying cathode at 1.5 A in group I induced a rough surface from the smooth surface before the treatment. EDS analysis confirmed that the surfaces treated on cathode at 1 A in group III revealed no signs of organic contamination.

Conclusion: Electrolysis of using carbon as electrodes, placing the contaminated healing abutments on cathode, and applying the electric current of 1 A at constant 10 V in 7.5% sodium bicarbonate could completely remove organic contaminants from the surfaces. This optimized electrochemical cleaning method seems to be well worth investigation for the clinical management of peri-implant infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648783PMC
http://dx.doi.org/10.1186/s40729-020-00265-zDOI Listing

Publication Analysis

Top Keywords

contaminated healing
16
healing abutments
12
group iii
12
electrochemical cleaning
8
cleaning contaminated
8
75% sodium
8
sodium bicarbonate
8
electrodes group
8
carbon electrodes
8
electric current
8

Similar Publications

Wounds from gunshots and other explosive devices are a source of loss of substances directly or secondary to a well- conducted debridement. In addition, these types of wounds are by definition contaminated. The major challenge in this context for any surgeon remains coverage.

View Article and Find Full Text PDF

Peptide Nanofibers and Skin Regeneration.

Adv Exp Med Biol

January 2025

Requalite GmbH, Gräfelfing, Germany.

Peptide nanofibers have been attractive targets for regenerative medicine applications due to their tailorability to be easily functionalized for specific bioactivity, biocompatibility, ease of synthesis, adjustability of their physicochemical characteristics, and lack of biological contamination. Research groups have investigated their use for the regeneration of various tissues, such as bone, cartilage, brain, peripheral nerves, cardiac tissue, vascular tissues, endocrine cells, muscles, etc., for the treatment of degenerative diseases or tissue loss due to accidents or aging.

View Article and Find Full Text PDF

Dry crude pomegranate peel extract as a bio-input for medicinal pharmaceutical gel with healing activity.

Chem Biodivers

January 2025

UFES: Universidade Federal do Espirito Santo, Center of Exact, Natural and Health Sciences, Alto Universitário, Alegre, BRAZIL.

The sustainable use of pomegranate peel, a by-product of the food industry, is gaining importance in developing pharmaceutical bio-inputs, aligning with circular economy practices and waste reduction. This study explores the application of dry crude pomegranate peel extract (PPE) as a bio-input for medicinal gels with wound healing properties. PPE was extracted via percolation in ethanol and freeze-dried.

View Article and Find Full Text PDF

Considerable research has focused on advanced wound dressing technology over the past decade. The increasing emphasis on health and medical treatment is crucial to the modern healthcare system. Consequently, high-quality wound dressings with advanced standards are essential for superior medical care.

View Article and Find Full Text PDF

Formulation development of highly stable collagenase-containing hydrogels for wound healing.

J Pharm Sci

January 2025

Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. Electronic address:

Collagenases are enzymes that break down collagen and are used in wound healing and treating various disorders. Currently, collagenase is commercially available in only ointment and injectable forms and is sensitive to various environmental factors. In the present study, different hydrogel formulations of collagenase have been prepared at pH 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!