A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly selective chemosensor for reactive carbonyl species based on simple 1,8-diaminonaphthalene. | LitMetric

Highly selective chemosensor for reactive carbonyl species based on simple 1,8-diaminonaphthalene.

J Photochem Photobiol B

Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India. Electronic address:

Published: December 2020

Reactive carbonyl species (RCSs) including one carbon formaldehyde (FA) and dicarbonyl compounds such as methylglyoxal (MGO) and glyoxal (GO) are produced during demethylase reactions and various glucose metabolic pathways respectively. Elevation of the RCSs concentrations in cells is due to abnormal DNA damage, glycation adducts with macromolecules that lead to various neurotoxic diseases. Hence, regular monitoring of these RCSs with an easy tool is of utmost interest. However, conventional methods such as chromatography and mass spectrometry for the detection of these species are not so economically viable. These issues were well addressed by the non-invasive reactivity-based fluorescence techniques. However, tedious synthesis, only specific to either mono aldehyde is limited to detect multiple RCSs in physiologies by synthesized fluorophores. An alternative, simple small molecules are widely applied as commercial biomarkers such as terephthalate and 2,3-diaminonaphthalene (NAP) for hydroxy radical (OH·) and nitric oxide (NO) respectively. Herein, we report an analogue of NAP, 1,8-diamino naphthalene (DAN) is an efficient chemosensor for highly sensitive detection of FA, MGO and GO with minimum detection limits of 0.95-3.97 μM. Surprisingly, DAN shows a "turn on" response towards RCSs but remaining silent towards NO which are exactly opposite to commercial probe NAP. Exogenous RCSs imaging in vitro cancerous cells shows the efficacy of the probe and its potential application for RCSs monitoring in cancer cells, generation of toxic byproducts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2020.112076DOI Listing

Publication Analysis

Top Keywords

reactive carbonyl
8
carbonyl species
8
rcss
7
highly selective
4
selective chemosensor
4
chemosensor reactive
4
species based
4
based simple
4
simple 18-diaminonaphthalene
4
18-diaminonaphthalene reactive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!