Azaindole therapeutic agents.

Bioorg Med Chem

Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, United States. Electronic address:

Published: December 2020

Azaindole structural framework is an integral part of several biologically active natural and synthetic organic molecules; and several FDA approved drugs for various diseases. In the last decade, quite a number of literature reports appeared describing the pharmacology, biological activity and therapeutic applications of a variety of azaindole molecules. This prompted the organic and medicinal chemistry community to develop novel synthetic methods for various azaindoles and test them for a bioactivity against a variety of biological targets. Herein, we have summarized the biological activity of therapeutically advanced clinical candidates and several preclinical candidate drugs that contain azaindole structural moiety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736151PMC
http://dx.doi.org/10.1016/j.bmc.2020.115830DOI Listing

Publication Analysis

Top Keywords

azaindole structural
8
biological activity
8
azaindole
4
azaindole therapeutic
4
therapeutic agents
4
agents azaindole
4
structural framework
4
framework integral
4
integral biologically
4
biologically active
4

Similar Publications

The natural 5-azaindoles, marine sponge guitarrin C and D, were observed to exert inhibitory activity against a highly active alkaline phosphatase (ALP) CmAP of the PhoA family from the marine bacterium , with IC values of 8.5 and 110 µM, respectively. The superimposition of CmAP complexes with -nitrophenyl phosphate (NPP), a commonly used chromogenic aryl substrate for ALP, and the inhibitory guitarrins C, D, and the non-inhibitory guitarrins A, B, and E revealed that the presence of a carboxyl group at C6 together with a hydroxyl group at C8 is a prerequisite for the inhibitory effect of 5-azaindoles on ALP activity.

View Article and Find Full Text PDF
Article Synopsis
  • - The frozen domain (FD) approximation using the fragment molecular orbital (FMO) method allows for efficient partial geometry optimization of large biomolecular systems, including protein-ligand complexes.
  • - A new variation called the frozen domain and partial dimer (FDPD) method was developed, which significantly reduces computational time for geometry optimization compared to conventional methods, achieving notable improvements in systems such as the β-adrenergic receptor and estrogen receptor.
  • - The FDPD method enhanced the understanding of structure-activity relationships in drug design, as it improved the correlation between ligand binding energy and biological activity by optimizing structures more effectively.
View Article and Find Full Text PDF

Structure-mutagenicity relationships on quinoline and indole analogues in the Ames test.

Genes Environ

November 2024

Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-shi, Ibaraki, 300-2635, Japan.

Background: Although the in silico predictive ability of the Ames test results has recently made remarkable progress, there are still some chemical classes for which the predictive ability is not yet sufficient due to a lack of Ames test data. These classes include simple heterocyclic compounds. This study aimed to investigate the mutagenicity and structure-mutagenicity relationships for some heterocycles in the Ames test.

View Article and Find Full Text PDF

We describe the design, synthesis and structure-activity relationship of a novel series of 1-(4-(7-azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1-indol-3-yl)pyrrolidine-2,5-dione derivatives with combined effects on the serotonin (5-HT) and dopamine (D) receptors and the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) transporters as multi-target directed ligands for the treatment of depression. All of the tested compounds demonstrated good affinity for the serotonin transporter (SERT). Among them, compounds and emerged as the lead candidates because of their promising pharmacological profile based on in vitro studies.

View Article and Find Full Text PDF

Synthesis of 3-heteroaryl-pyrrolo[2,3-b]pyridines as potent inhibitors of AP-2-associated protein kinase 1 (AAK1) with antiviral activity.

Eur J Med Chem

December 2024

KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Molecular Structural and Translational Virology Research Group, Herestraat 49, box 1043, B-3000 Leuven, Belgium. Electronic address:

Inhibition of AP-2-associated protein kinase 1 (AAK1) has been shown to be a promising avenue for the development of broad-spectrum antiviral agents. On a previously described AAK1 inhibitor based on a pyrrolo[2,3-b]pyridine scaffold, the concept of isosterism was applied, by replacing a carboxamide linker by various five-membered heterocycles. It led to the discovery of a novel series of AAK1 inhibitors with IC values in the low nM range, that also displayed antiviral activity against the dengue virus and Venezuelan equine encephalitis virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!