A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selective cysteines oxidation in soluble guanylyl cyclase catalytic domain is involved in NO activation. | LitMetric

Selective cysteines oxidation in soluble guanylyl cyclase catalytic domain is involved in NO activation.

Free Radic Biol Med

Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ, 07103, USA. Electronic address:

Published: January 2021

Nitric oxide (NO) binds to soluble guanylyl cyclase (GC1) and stimulates its catalytic activity to produce cGMP. Despite the key role of the NO-cGMP signaling in cardiovascular physiology, the mechanisms of GC1 activation remain ill-defined. It is believed that conserved cysteines (Cys) in GC1 modulate the enzyme's activity through thiol-redox modifications. We previously showed that GC1 activity is modulated via mixed-disulfide bond by protein disulfide isomerase and thioredoxin 1. Herein we investigated the novel concept that NO-stimulated GC1 activity is mediated by thiol/disulfide switches and aimed to map the specific Cys that are involved. First, we showed that the dithiol reducing agent Tris (2-carboxyethyl)-phosphine reduces GC1 response to NO, indicating the significance of Cys oxidation in NO activation. Second, using dibromobimane, which fluoresces when crosslinking two vicinal Cys thiols, we demonstrated decreased fluorescence in NO-stimulated GC1 compared to unstimulated conditions. This suggested that NO-stimulated GC1 contained more bound Cys, potentially disulfide bonds. Third, to identify NO-regulated Cys oxidation using mass spectrometry, we compared the redox status of all Cys identified in tryptic peptides, among which, ten were oxidized and two were reduced in NO-stimulated GC1. Fourth, we resorted to computational modeling to narrow down the Cys candidates potentially involved in disulfide bond and identified Cys489 and Cys571. Fifth, our mutational studies showed that Cys489 and Cys571 were involved in GC1'response to NO, potentially as a thiol/disulfide switch. These findings imply that specific GC1 Cys sensitivity to redox environment is critical for NO signaling in cardiovascular physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889651PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.001DOI Listing

Publication Analysis

Top Keywords

no-stimulated gc1
16
gc1
10
cys
9
soluble guanylyl
8
guanylyl cyclase
8
signaling cardiovascular
8
cardiovascular physiology
8
gc1 activity
8
cys oxidation
8
cys489 cys571
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!