The nucleus accumbens (NAc) is critical for regulating the appetitive and consummatory phases of motivated behavior. These experiments examined the effects of dopamine and opioid receptor manipulations within the NAc during an effort-based choice task that allowed for simultaneous assessment of both phases of motivation. Male Sprague-Dawley rats received bilateral guide cannulas targeting the NAc core and were tested in 1-hr sessions with free access to rat chow and the choice to work for sugar pellets on a progressive ratio 2 (PR2) reinforcement schedule. Individual groups of rats were tested following stimulation or blockade of NAc D1-like or D2-like receptors, stimulation of μ-, δ-, or κ-opioid receptors, or antagonism of opioid receptors. Behavior was examined under ad libitum conditions and following 23-h food restriction. NAc blockade of the D1-like receptors or stimulation of the D2 receptor reduced break point for earning sugar pellets; D2 receptor stimulation also modestly lowered chow intake. NAc μ-opioid receptor stimulation increased intake of the freely-available chow while simultaneously reducing break point for the sugar pellets. In non-restricted conditions, δ-opioid receptor stimulation increased both food intake and breakpoint. There were no effects of stimulating NAc D1 or κ receptors, nor did blocking D2 or opioid receptors affect task behavior. These data support prior literature linking dopamine to appetitive motivational processes, and suggest that μ- and δ-opioid receptors affect food-directed motivation differentially. Specifically, μ-opioid receptors shifted behavior towards consumption, and δ-opioid receptor enhanced both sugar-seeking and consumption of the pabulum chow when animals were not food restricted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2020.112999 | DOI Listing |
Materials (Basel)
December 2024
Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland.
The present study aimed to determine the effect of material modification by hot water extraction (HWE) on the compaction efficiency of shredded stalks in the pellet production process. Samples were prepared to differ in the number of HWE cycles: HWE I was subjected to a single cycle, HWE II was subjected to two cycles, and HWE III was subjected to three cycles and unmodified material. An analysis of the compaction process was carried out to evaluate the effect of HWE on density and energy consumption.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India. Electronic address:
Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications.
View Article and Find Full Text PDFFood Chem
February 2025
Department of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030 Gembloux, Belgium.
J Vet Intern Med
November 2024
Equine Sports Medicine Practice, Waterloo, Belgium.
J Vet Intern Med
November 2024
Mississippi State University, College of Veterinary Medicine, Mississippi, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!