Polymorphs and Amorphous State of Glipizide: Preparation and Solid-State Transformations.

J Pharm Sci

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Published: April 2021

The solid-state diversity of active pharmaceutical ingredients can provide theoretical guidance for the production and storage of drugs. In this study, three solid forms of glipizide were obtained through various methods, and the solid-state transformations were extensively investigated. Form I could be prepared using evaporative crystallization, cooling crystallization, anti-solvent crystallization, and solvent-mediated slurry conversion experiments (SSCE). Form II was produced by milling. Form III was obtained by milling and SSCE. The results of solid-state transformations indicated that Form I transformed to II during neat milling at 25 °C. In contrast, solvent inhibited the solid-state transformations of Form I under liquid-assisted milling. Forms II and III remained invariable under neat milling at 25 °C, and solid-state transformation of Form III also did not occur in the liquid-assisted milling. In SSCE, the solvent's nature and its temperature significantly influenced the solid-state conversion of amorphous glipizide. Form II converted to either Form I or III in water above 50 °C, and only transformed into Form I at 25 °C. However, the solid-state transformation did not occur when pure Form I or III was stirred in water. Form II also converted to Form I in the organic solvents SSCE at different temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2020.10.063DOI Listing

Publication Analysis

Top Keywords

solid-state transformations
16
form iii
16
form
12
solid-state
8
milling ssce
8
neat milling
8
milling 25 °c
8
liquid-assisted milling
8
25 °c solid-state
8
solid-state transformation
8

Similar Publications

Volatile Resistive Switching and Short-Term Synaptic Plasticity in a Ferroelectric-Modulated SrFeO Memristor.

ACS Appl Mater Interfaces

January 2025

Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

SrFeO (SFO) offers a topotactic phase transformation between an insulating brownmillerite SrFeO (BM-SFO) phase and a conductive perovskite SrFeO (PV-SFO) phase, making it a competitive candidate for use in resistive memory and neuromorphic computing. However, most of existing SFO-based memristors are nonvolatile devices which struggle to achieve short-term synaptic plasticity (STP). To address this issue and realize STP, we propose to leverage ferroelectric polarization to effectively draw ions across the interface so that the PV-SFO conductive filaments (CFs) can be ruptured in absence of an external field.

View Article and Find Full Text PDF

Organic compounds present promising options for sustainable zinc battery electrodes. Nevertheless, the electrochemical properties of current organic electrodes still lag behind those of their inorganic counterparts. In this study, nitro groups were incorporated into pyrene-4, 5, 9, 10-tetraone (PTO), resulting in an elevated discharge voltage due to their strong electron-withdrawing capabilities.

View Article and Find Full Text PDF

Laser-induced fluorescence spectroscopy was used to detect mercury ions in aqueous solutions, in which CH-95 resin was used to chelate the ions to transform the liquid samples into solid ones. The experimental results showed that the fluorescence emission of the chelated solid-state samples excited by a low-power semiconductor laser at the wavelength of 447 nm was significantly enhanced due to the chelating reaction. The fluorescence intensity was proportional to the concentration of mercury ions with a linear correlation coefficient of = 0.

View Article and Find Full Text PDF

Dy/Tb co-doped glasses have drawn profound attention for their potential in solid state lighting due to their unique luminescence properties. This research highlights the effect of compositional variation on structural and optical characteristics of Dy/Tb co-doped phospho-tellurite glasses through a comprehensive analysis involving X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and photoluminescence (PL) studies. XRD and FTIR spectroscopy are conducted to characterize the glass matrix and confirm its structural integrity.

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!