Objectives: Malaria infection is still known to be a worldwide public health problem, especially in tropical and sub-tropical African countries like Sudan. A pilot study conducted to describe the trend of P. falciparum drug resistance markers in 2017-2018 in comparison to CQ and AS/SP eras in Sudan. The Pfcrt, Pfmdr-1, Pfdhfr, and Pfdhps genes were investigated. Data deposited by the worldwide antimalarial resistance network was consulted, and the molecular markers previously reported from Sudan were analyzed.

Results: Drug molecular markers analysis was successfully done on 20 P. falciparum isolates. The Pfcrt K76 showed high frequency; 16 (80%). For the Pfmdr-1, 9 (45%) isolates were carrying the N86 allele, and 11 (55%) were 86Y allele. While the Y184F of the Pfmdr-1 showed a higher frequency of 184F compared to Y184; 16 (80%) and 4 (20%), respectively. In the Pfdhfr, 51I allele showed higher frequency compared to N51; 18 (90%) and 2 (10%), respectively. For S108N, 18 (90%) were 108 N and 2 (10%) were S108. In the Pfdhps, all isolates were carrying the mutant alleles; 437G and 540E. The frequency distribution of the Pfcrt, Pfmdr-1, Pfdhfr, Pfdhps was significantly different across the whole years in Sudan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648977PMC
http://dx.doi.org/10.1186/s13104-020-05363-0DOI Listing

Publication Analysis

Top Keywords

drug resistance
8
resistance markers
8
sudan pilot
8
pilot study
8
pfcrt pfmdr-1
8
pfmdr-1 pfdhfr
8
pfdhfr pfdhps
8
molecular markers
8
isolates carrying
8
higher frequency
8

Similar Publications

Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.

J Transl Med

January 2025

Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.

Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.

View Article and Find Full Text PDF

Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment.

Lipids Health Dis

January 2025

Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.

Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function.

View Article and Find Full Text PDF

Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Impacts of genomic alterations on the efficacy of HER2-targeted antibody-drug conjugates in patients with metastatic breast cancer.

J Transl Med

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.

Background: HER2-targeted antibody-drug conjugates (ADCs) have revolutionized the treatment landscape of metastatic breast cancer. However, the efficacy of these therapies may be compromised by genomic alterations. Hence, this study aims to identify factors predicting sensitivity to HER2 ADC in metastatic breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!