We describe a bottom-up surface functionalization to design hybrid molecular coatings that tether biomembranes using wet chemistry. First, a monolayer was formed by immersion in a NH-Ar-SOH solution, allowing aryldiazonium salt radicals to spontaneously bind to it via strong C bonding. After formation of the air-stable and dense molecular monolayer (-Ar-SOH), a subsequent activation was used to form highly reactive -Ar-SOCl groups nearly perpendicular to the monolayer. These can bind commercial surfactants, PEGylated oligomers and other inexpensive molecules via their -OH, -COOH, or -NH chain end-moieties, to build hybrid coatings. Metal and oxidized chromium, semi-conductor n-doped silicon (111), are the substrates tested for this protocol and the aromatic organic monolayers formed at their surface are characterized by X-ray photoelectron spectroscopy (XPS). XPS reveals unambiguously the presence of C-Cr and C-Si bonds, ensuring robustness of the coatings. Functional sulfur groups (-SOH) cover up to 6.5×10 mol cm of the silicon interface and 4.7×10 mol cm of the oxidized chromium interface. These surface concentrations are comparable to the classic values obtained when the prefunctionalisation is driven by electrochemistry on conductors. Tethered lipid membranes formed on these coatings were analyzed by neutron reflectivity at the interface of functionalized n-doped silicon substrates after immersion in a solution of lipid vesicles and subsequent fusion. Results indicate a rather compact hybrid coating of Brij anchor-harpoon molecules that maintain a single lipid bilayer above the substrate, on top of a hydrated PEO cushion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2020.111427 | DOI Listing |
J Mater Chem B
January 2025
Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.
View Article and Find Full Text PDFPlant J
January 2025
Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.
Microalgae possess diverse lipid classes as components of structural membranes and have adopted various lipid remodeling strategies involving phospholipids to cope with a phosphorus (P)-limited environment. Here, we report a unique adaptative strategy to P deficient conditions in two cold-adapted microalgae, Raphidonema monicae and Raphidonema nivale, involving the lipid class diacylglyceryl glucuronide (DGGA) and the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Lipidomic analyses showed that these two lipid classes were present only in trace amounts in nutrient replete conditions, whereas they significantly increased under P-starvation concomitant with a reduction in phospholipids, suggesting a physiological significance of these lipid classes to combat P-starvation.
View Article and Find Full Text PDFBackground: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.
View Article and Find Full Text PDFUnlabelled: infections cause over 12,000 deaths and an estimated one billion dollars in healthcare costs annually in the United States. The cell membrane is an essential structure that is important for protection from the extracellular environment, signal transduction, and transport of nutrients. The polar membrane lipids of are ∼50% glycolipids, a higher percentage than most other organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!