Microplastic pollution is an emerging threat to marine biota. Uptake of microplastics can impair nutrition and affect the performance of organisms. However, the vulnerability to microplastics seems to vary between species for yet widely unexplored reasons. We investigated the stomach content of the brown shrimp, Crangon crangon, from the southern North Sea and performed feeding experiments and anatomical studies of the digestive organs to comprehend the distribution of fluorescent microparticles within the shrimp. Shrimp collected in their natural environment contained between 51 and more than 3,000 sand grains and fragments of bivalve shells in their stomachs. Sand grains may have been ingested to exploit the associated biofilm or to support maceration of food. Bivalve shell fragments were particularly abundant in summer when shrimp fed on freshly settled mussels. Shrimps' stomach can be cleaned from ingested particles by regurgitation. In an experimental approach, we administered fluorescent microbeads of 0.1, 2.1, and 9.9 μm diameter. Only the smallest particles (0.1 μm) entered the midgut gland, which is the principal site of nutrient resorption in crustaceans. A fine-meshed chitinous filter system in the stomach of the shrimp prevents the passage of particles larger than about 1 μm. C. crangon appears well adapted to handle natural microscopic particles. This trait might also be advantageous in coping with microplastic pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.zool.2020.125848 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!