Among diarrheagenic E. coli (DEC), enterohaemorrhagic E. coli (EHEC) are the most virulent anthropozoonotic agents. The ability of bacterial cells to functionally interact with their surrounding essentially relies on the secretion of different protein effectors. To experimentally determine the repertoire of extracytoproteins in E. coli O157:H7, a subproteomic analysis was performed not only considering the extracellular milieu but the cell surface and outer membrane vesicles. Following a secretome-based approach, the proteins trafficking from the interior to the exterior of the cell were depicted considering cognate protein transport systems and subcellular localisation. Label-free quantitative analysis of the proteosurfaceome, proteovesiculome and exoproteome from E. coli O157:H7 grown in three different nutrient media revealed differential protein expression profiles and allowed defining the core and variant subproteomes. Network analysis further revealed the higher abundance of some protein clusters in chemically defined medium over rich complex medium, especially related to some outer membrane proteins, ABC transport and Type III secretion systems. This first comprehensive study of the EHEC secretome unravels the profound influence of environmental conditions on the extracytoplasmic proteome, provides new insight in the physiology of E. coli O157:H7 and identifies potentially important molecular targets for the development of preventive strategies against EHEC/STEC. SIGNIFICANCE: Escherichia coli O157:H7 is responsible for severe diarrhoea especially in young children. Despite years of investigations, the global view of the extracytoplasmic proteins expressed in this microorganism was eluded. To provide the first comprehensive view of the secretome landscape of E. coli O157:H7, the exoproteome, proteosurfaceome and proteovesiculome were profiled using growth conditions most likely to induce changes in bacterial protein secretion. The profound influence of growth conditions on the extracytoplasmic proteome was unravelled and allowed identifying the core and variant subproteomes. Besides new insight in the physiology of enterohaemorrhagic E. coli, these proteins potentially constitute important molecular targets for the development of preventive strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2020.104025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!