β-hydroxybutyrate (β-HB) exerts anti-inflammatory and antioxidant effects in lipopolysaccharide (LPS)-stimulated macrophages in Liza haematocheila.

Fish Shellfish Immunol

Department of Marine Technology, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China. Electronic address:

Published: December 2020

Poly-β-hydroxybutyrate (PHB) can be hydrolyzed to β-hydroxybutyrate (β-HB) in the intestinal tract of animals, and dietary PHB supplementation could enhance the immunity and disease resistance of aquatic animals. Antioxidant system is responsive to PHB stimuli via MAPK/PI3K-Akt/TNF/NF-κB/TCR/TLR signaling pathways. However, the precise immunopotentiation mechanism needs further study. In this study, macrophages from spleen in Liza haematocheila was used to study the effect of β-HB on cell viability and antioxidant function to illustrate the immunopotentiation mechanism of PHB. The results showed that β-HB (100 μg/mL) promoted the viability of macrophages and balanced the production of reactive oxygen species, but inhibited the excessive production of intracellular nitric oxide. In order to further explore the immunopotentiation mechanism of β-HB, LPS (100 μg/mL) was used to induce the inflammation and investigated the inhibitory effect of β-HB on inflammation. The results showed that LPS could induce inflammation successfully, and β-HB exerted anti-inflammatory and antioxidant effects in LPS-stimulated macrophages. Compared with LPS stimuli alone, the expression of anti-inflammatory genes NF-κBIA, MAP3K8 and TLR5 in β-HB pretreatment group was up-regulated, and the expression of pro-inflammatory genes TNFSF6, TNF-α, PI3K, NF-κB and TLR1 down-regulated. It suggested that β-HB inhibited the inflammatory response by up-regulation of anti-inflammatory genes such as NF-κBIA, thereby enhancing the immunity of the body.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.11.005DOI Listing

Publication Analysis

Top Keywords

immunopotentiation mechanism
12
β-hydroxybutyrate β-hb
8
anti-inflammatory antioxidant
8
antioxidant effects
8
lps-stimulated macrophages
8
liza haematocheila
8
β-hb
8
induce inflammation
8
anti-inflammatory genes
8
genes nf-κbia
8

Similar Publications

5-FU is a widely used chemotherapy drug for esophageal carcinomas, but therapy failure has been observed in 5-FU-resistant patients. Overcoming this resistance is a significant challenge in cancer treatment, requiring identifying and targeting important resistance mechanisms. PYGO2 expression is crucial in developing resistance to various chemotherapy drugs.

View Article and Find Full Text PDF

Background: Hemophagocytic lymphohistiocytosis (HLH) is a rare complication of multiple myeloma (MM), with limited data available on its incidence, clinical presentation, and treatment. The underlying mechanisms linking MM and HLH remain unclear, including the potential role of MM treatment agents in triggering HLH.

Methods: This case report presents a patient with MM who developed HLH while on lenalidomide maintenance therapy.

View Article and Find Full Text PDF

COVID-19 remains a significant global health problem with uncertain long-term consequences for convalescents. We investigated the relationships between anti-N protein antibody levels, severe acute respiratory syndrome (SARS)-CoV-2-associated TCR repertoire parameters, HLA type and epidemiological information from three cohorts of 524 SARS-CoV-2-infected subjects subgrouped in acute phase, seronegative and seropositive convalescents from the Emilia Romagna region. Epidemiological information and anti-N antibody index were associated with TCR repertoire data.

View Article and Find Full Text PDF

This study aims to investigate the mechanism of tanshinone Ⅱ_A(Tan Ⅱ_A) in protecting mice from diethylinitrosamine(DEN)/carbon tetrachloride(CCl_4)/ethanol(C_2H_5OH)-induced hepatocellular carcinoma(HCC) and HepG2 cells from hydrogen peroxide(H_2O_2)-induced oxidative damage via the phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and nuclear factor E2-related factor 2(Nrf2)/heme oxygenase 1(HO-1) signaling pathways. Sixty male C57BL/6J mice were grouped as follows: control, model, low, medium, and high-dose(10, 20, 40 mg·kg~(-1), respectively) Tan Ⅱ_A, and colchicine(0.2 mg·kg~(-1)), with 10 mice in each group.

View Article and Find Full Text PDF

[Mechanism of inflammatory microecological response to TAS2R14/SIgA/TSLP in regulating epithelial cell barrier in cold asthma rats through lung-gut axis by using Shegan Mahuang Decoction and bitter and purging Chinese herbs].

Zhongguo Zhong Yao Za Zhi

December 2024

Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Application and Transformation of Traditional Chinese Medicine in Prevention and Treatment of Major Pulmonary Diseases Hefei 230031, China Key Laboratory of Xin'an Medicine, Ministry of Education Hefei 230038, China.

This study aimed to investigate the mechanism by which Shegan Mahuang Decoction(SGMH) and its bitter Chinese herbs(BCHs) regulated the lung-gut axis through the bitter taste receptor 14(TAS2R14)/secretory immunoglobulin A(SIgA)/thymic stromal lymphopoietin(TSLP) to intervene in the epithelial cell barrier of cold asthma rats. Fifty SD rats were randomly divided into the following five groups: normal group, model group, dexamethasone group, SGMH group, and BCHs group. A 10% ovalbumin(OVA) solution was used to sensitize the rats via subcutaneous injection on both sides of the abdomen and groin, combined with 2% OVA atomization and cold(2-4 ℃) stimulation to induce a cold asthma model in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!