A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. | LitMetric

Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as "fast transient" lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, "O" stands for "origin" (minimal fluorescence), "P" for "peak" (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, F is the fluorescence intensity at the "O" level, whereas F is the intensity at the P level, and F (= F - F) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (F/F) and of the variable to the minimum (F/F) fluorescence, the performance index (PI), as well as the amplitude of the I-P phase (A) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O-J phase (A) and the normalized area above the OJIP curve (S) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J-I and I-P subphases (A and A) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-020-00794-zDOI Listing

Publication Analysis

Top Keywords

ojip curve
16
fluorescence induction
12
parameters derived
12
grown field
12
ojip
9
natural variation
8
variation fast
8
fast phase
8
fluorescence
8
chlorophyll fluorescence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!