Objective: This study was undertaken to determine whether a low residual quantity of dystrophin protein is associated with delayed clinical milestones in patients with DMD mutations.

Methods: We performed a retrospective multicentric cohort study by using molecular and clinical data from patients with DMD mutations registered in the Universal Mutation Database-DMD France database. Patients with intronic, splice site, or nonsense DMD mutations, with available muscle biopsy Western blot data, were included irrespective of whether they presented with severe Duchenne muscular dystrophy (DMD) or milder Becker muscular dystrophy (BMD). Patients were separated into 3 groups based on dystrophin protein levels. Clinical outcomes were ages at appearance of first symptoms; loss of ambulation; fall in vital capacity and left ventricular ejection fraction; interventions such as spinal fusion, tracheostomy, and noninvasive ventilation; and death.

Results: Of 3,880 patients with DMD mutations, 90 with mutations of interest were included. Forty-two patients expressed no dystrophin (group A), and 31 of 42 (74%) developed DMD. Thirty-four patients had dystrophin quantities < 5% (group B), and 21 of 34 (61%) developed BMD. Fourteen patients had dystrophin quantities ≥ 5% (group C), and all but 4 who lost ambulation beyond 24 years of age were ambulant. Dystrophin quantities of <5%, as low as <0.5%, were associated with milder phenotype for most of the evaluated clinical outcomes, including age at loss of ambulation (p < 0.001).

Interpretation: Very low residual dystrophin protein quantity can cause a shift in disease phenotype from DMD toward BMD. ANN NEUROL 2021;89:280-292.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894170PMC
http://dx.doi.org/10.1002/ana.25951DOI Listing

Publication Analysis

Top Keywords

patients dmd
12
dmd mutations
12
low residual
8
dystrophin protein
8
muscular dystrophy
8
patients
7
dmd
6
dystrophin
5
residual dystrophin
4
dystrophin quantity
4

Similar Publications

Congenital muscular dystrophies and myopathies: the leading cause of genetic muscular disorders in eleven Chinese families.

BMC Musculoskelet Disord

January 2025

Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.

Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.

Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.

View Article and Find Full Text PDF

Trends in Opioid Prescriptions to Opioid-Naïve Patients by Oral and Maxillofacial Surgeons in Massachusetts 2012-2022.

J Oral Maxillofac Surg

December 2024

Corresponding Member of the Faculty, Harvard School of Dental Medicine, and Visiting Surgeon, Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, MA. Electronic address:

Background: Many oral and maxillofacial surgery patients are young, healthy adults who are opioid-naïve. Over-prescribing opioids increases the risk of subsequent misuse and diversion.

Purpose: The purpose of this study was to measure and compare opioid prescriptions to opioid naïve and nonnaïve patients by oral and maxillofacial surgeons in Massachusetts from 2012 to 2022.

View Article and Find Full Text PDF

Aim:  Duchenne muscular dystrophy (DMD) is the most frequently seen muscular disease in childhood. Cardiac involvement is extremely important in terms of morbidity and mortality in these patients. Different studies have shown that mutations occurring in various exons are cardioprotective or increase cardiac involvement in DMD cases.

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!