Backgrounds: Acyl-coenzyme A (CoA) esters are important intermediates in lipid metabolism with regulatory properties. Acyl-CoA-binding proteins bind and transport acyl-CoAs to fulfill these functions. RICE ACYL-COA-BINDING PROTEIN6 (OsACBP6) is currently the only one peroxisome-localized plant ACBP that has been proposed to be involved in β-oxidation in transgenic Arabidopsis. The role of the peroxisomal ACBP (OsACBP6) in rice (Oryza sativa) was investigated.
Results: Here, we report on the function of OsACBP6 in rice. The osacbp6 mutant showed diminished growth with reduction in root meristem activity and leaf growth. Acyl-CoA profiling and lipidomic analysis revealed an increase in acyl-CoA content and a slight triacylglycerol accumulation caused by the loss of OsACBP6. Comparative transcriptomic analysis discerned the biological processes arising from the loss of OsACBP6. Reduced response to oxidative stress was represented by a decline in gene expression of a group of peroxidases and peroxidase activities. An elevation in hydrogen peroxide was observed in both roots and shoots/leaves of osacbp6. Taken together, loss of OsACBP6 not only resulted in a disruption of the acyl-CoA homeostasis but also peroxidase-dependent reactive oxygen species (ROS) homeostasis. In contrast, osacbp6-complemented transgenic rice displayed similar phenotype to the wild type rice, supporting a role for OsACBP6 in the maintenance of the acyl-CoA pool and ROS homeostasis. Furthermore, quantification of plant hormones supported the findings observed in the transcriptome and an increase in jasmonic acid level occurred in osacbp6.
Conclusions: In summary, OsACBP6 appears to be required for the efficient utilization of acyl-CoAs. Disruption of OsACBP6 compromises growth and led to provoked defense response, suggesting a correlation of enhanced acyl-CoAs content with defense responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647982 | PMC |
http://dx.doi.org/10.1186/s12284-020-00435-y | DOI Listing |
Rice (N Y)
November 2020
School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
Backgrounds: Acyl-coenzyme A (CoA) esters are important intermediates in lipid metabolism with regulatory properties. Acyl-CoA-binding proteins bind and transport acyl-CoAs to fulfill these functions. RICE ACYL-COA-BINDING PROTEIN6 (OsACBP6) is currently the only one peroxisome-localized plant ACBP that has been proposed to be involved in β-oxidation in transgenic Arabidopsis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!