In the mouse brain, olfactory information is transmitted to the olfactory cortex via olfactory bulb (OB) projection neurons known as mitral and tufted cells. Although mitral and tufted cells share many cellular characteristics, these cell types are distinct in their somata location and in their axonal and dendritic projection patterns. Moreover, mitral cells consist of heterogeneous subpopulations. We have previously shown that mitral cells generated at different embryonic days differentially localize within the mitral cell layer (MCL) and extend their lateral dendrites to different sublayers of the external plexiform layer (EPL). Here, we examined the axonal projection patterns from the subpopulations of OB projection neurons that are determined by the timing of neurogenesis (neuronal birthdate) to understand the developmental origin of the diversity in olfactory pathways. We separately labeled early-generated and late-generated OB projection neurons using electroporation performed at embryonic day (E)11 and E12, respectively, and quantitatively analyzed their axonal projection patterns in the whole mouse brain using high-resolution 3D imaging. In this study, we demonstrate that the axonal projection of late-generated OB projection neurons is restricted to the anterior portion of the olfactory cortex while those of the early-generated OB projection neurons innervate the entire olfactory cortex. Our results suggest that the late-generated mitral cells do not extend their axons to the posterior regions of the olfactory cortex. Therefore, the mitral cells having different birthdates differ, not only in cell body location and dendritic projections within the OB, but also in their axonal projection pattern to the olfactory cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716433 | PMC |
http://dx.doi.org/10.1523/ENEURO.0369-20.2020 | DOI Listing |
Brain Behav
January 2025
Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.
Background: Pain is a prevalent comorbidity in numerous clinical conditions and causes suffering; however, the mechanism of pain is intricate, and the neural circuitry underlying pain in the brain remains incompletely elucidated. More research into the perception and modulation of pain within the central nervous system is essential. The nucleus accumbens (NAc) plays a pivotal role in the regulation of animal behavior, and extensive research has unequivocally demonstrated its significant involvement in the occurrence and development of pain.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry, McGill University, Montreal, QC, Canada.
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.
View Article and Find Full Text PDFNeurobiol Stress
January 2025
Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
Actively avoiding danger is necessary for survival. Most research on active avoidance has focused on the behavioral and neurobiological processes when individuals learn to avoid alone, within a solitary context. Therefore, little is known about how social context affects active avoidance.
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
Federal State Budgetary Educational Institution, Institute of Theoretical and Experimental Biophysics, 142290 Pushchino, Russia.
Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
Striatum, the input stage of the basal ganglia, is important for sensory-motor integration, initiation and selection of behavior, as well as reward learning. Striatum receives glutamatergic inputs from mainly cortex and thalamus. In rodents, the striatal projection neurons (SPNs), giving rise to the direct and the indirect pathway (dSPNs and iSPNs, respectively), account for 95% of the neurons, and the remaining 5% are GABAergic and cholinergic interneurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!