Objectives: Acoustic noise emission from MRI scanners is considered a major factor of patient discomfort during routine MRI examinations. We prospectively evaluated the impact of acoustic noise reduction using software implementations in routine clinical MRI on subjective patient experience and image quality.

Methods: Two-hundred consecutive patients undergoing one of four MRI examinations (brain, lumbar spine, shoulder, and knee) at a single center were prospectively randomized into two groups at a 1 to 1 ratio: standard MRI examination and MRI examination with acoustic noise reduction. After the examination, patients were asked to complete a questionnaire aimed at defining their subjective experience (primary endpoint). Two readers assessed subjective image quality of all patient studies in consensus (secondary endpoint). Nonparametric tests and logistic regression models were used for statistical analysis.

Results: Hundred-seventy-four patients were included in the final study. Patients in the intervention group felt less discomforted by the acoustic noise (p = 0.01) and reported increased audibility of music through the headphones (p = 0.03). No significant difference in subjective image quality was found.

Conclusion: Our study indicates that the effects of acoustic noise reduction in routine clinical MRI can be translated into reduced patient discomfort from acoustic noise and improved audibility of music. Acoustic noise reduction thus significantly contributes to increased patient comfort during MRI examinations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2020.10.012DOI Listing

Publication Analysis

Top Keywords

acoustic noise
32
noise reduction
20
routine clinical
12
mri examinations
12
impact acoustic
8
noise
8
patient experience
8
mri
8
patient discomfort
8
clinical mri
8

Similar Publications

Anthropogenic noise pollution has been accelerating at an alarming rate, greatly altering aquatic soundscapes. Animals use various mechanisms to avoid acoustic masking in noisy environments, including altering calling rates or the frequency (pitch) of their vocalizations or increasing the amplitude (loudness) of their vocalizations (i.e.

View Article and Find Full Text PDF

This study investigates the aerodynamic and aeroacoustic behavior of propellers operating in ground-effect conditions, with an emphasis on the impact of porous ground surface treatments. The investigation explores the potential of porous materials to reduce propeller noise near the ground, a major barrier to the acceptance and integration of Urban Air Mobility (UAM) systems. Experiments were conducted in an anechoic chamber using an APC [Formula: see text] inch propeller in a pusher configuration.

View Article and Find Full Text PDF

Background And Objective: One of the functions attributed to the auditory efferent system is related to the processing of acoustic stimuli in noise backgrounds. However, clinical implications and the neurophysiological mechanisms of this system are not yet understood, especially on higher regions of the central nervous system. Only a few researchers studied the effects of noise on cortical auditory evoked potentials (CAEP), but the lack of studies in this area and the contradictory results, especially in children, point to the need to investigate different protocols and parameters that could allow the study of top-down activity in humans.

View Article and Find Full Text PDF

With the increasing height and rotor diameter of wind turbines, bat activity monitoring within the risk area becomes more challenging. This study investigates the impact of Unmanned Aerial Systems (UAS) on bat activity and explores acoustic bat detection via UAS as a new data collection method in the vicinity of wind turbines. We tested two types of UAS, a multicopter and a Lighter Than Air (LTA) UAS, to understand how they may affect acoustically recorded and analyzed bat activity level for three echolocation groups: Pipistrelloid, Myotini, and Nyctaloid.

View Article and Find Full Text PDF

Animals employ various strategies to minimize the overlap of their vocalizations with other sounds, thereby enhancing the effectiveness of their communication. However, little attention has been given to experimentally examining how the structure of the acoustic signal changes in response to various kinds of disturbances in the soundscape. In this study, I experimentally investigated whether male thrush nightingales (Luscinia luscinia) adjust their singing rate, song frequency, and song type in response to different types of artificial sounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!