A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning enables discovery of highly potent anti-osteoporosis natural products. | LitMetric

Deep learning enables discovery of highly potent anti-osteoporosis natural products.

Eur J Med Chem

State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China. Electronic address:

Published: January 2021

A pre-trained self-attentive message passing neural network (P-SAMPNN) model was developed based on our anti-osteoclastogenesis dataset for virtual screening purpose. Validation processes proved that P-SAMPNN model was significantly superior to the other base line models. A commercially available natural product library was virtually screened by the P-SAMPNN model and resulted in confirmed 5 hits from 10 selected virtual hits. Among the confirmed hits, compounds AP-123/40765213 and AE-562/43462182 are the nanomolar inhibitors against osteoclastogenesis with a new scaffold. Further studies indicate that AP-123/40765213 and AE-562/43462182 significantly suppress the mRNA expression of RANK and downregulate the expressions of osteoclasts-related genes Ctsk, Nfatc1, and Tracp. Our work demonstrated that P-SAMPNN method can guide phenotype-based drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2020.112982DOI Listing

Publication Analysis

Top Keywords

p-sampnn model
12
confirmed hits
8
ap-123/40765213 ae-562/43462182
8
deep learning
4
learning enables
4
enables discovery
4
discovery highly
4
highly potent
4
potent anti-osteoporosis
4
anti-osteoporosis natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!