Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A pre-trained self-attentive message passing neural network (P-SAMPNN) model was developed based on our anti-osteoclastogenesis dataset for virtual screening purpose. Validation processes proved that P-SAMPNN model was significantly superior to the other base line models. A commercially available natural product library was virtually screened by the P-SAMPNN model and resulted in confirmed 5 hits from 10 selected virtual hits. Among the confirmed hits, compounds AP-123/40765213 and AE-562/43462182 are the nanomolar inhibitors against osteoclastogenesis with a new scaffold. Further studies indicate that AP-123/40765213 and AE-562/43462182 significantly suppress the mRNA expression of RANK and downregulate the expressions of osteoclasts-related genes Ctsk, Nfatc1, and Tracp. Our work demonstrated that P-SAMPNN method can guide phenotype-based drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2020.112982 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!