A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative study between the anti-P. falciparum activity of triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives and the identification of new PfDHODH inhibitors. | LitMetric

Comparative study between the anti-P. falciparum activity of triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives and the identification of new PfDHODH inhibitors.

Eur J Med Chem

Laboratorio de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundacao Oswaldo Cruz. Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, 21041-250, Brazil. Electronic address:

Published: January 2021

In this work, we designed and synthesized 35 new triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives as P. falciparum inhibitors (3D7 strain). Thirty compounds exhibited anti-P. falciparum activity, with IC values ranging from 0.030 to 9.1 μM. The [1,2,4]triazolo[1,5-a]pyrimidine derivatives were more potent than the pyrazolo[1,5-a]pyrimidine and quinoline analogues. Compounds 20, 21, 23 and 24 were the most potent inhibitors, with IC values in the range of 0.030-0.086 μM and were equipotent to chloroquine. In addition, the compounds were selective, showing no cytotoxic activity against the human hepatoma cell line HepG2. All [1,2,4]triazolo[1,5-a]pyrimidine derivatives inhibited PfDHODH activity in the low micromolar to low nanomolar range (IC values of 0.08-1.3 μM) and did not show significant inhibition against the HsDHODH homologue (0-30% at 50 μM). Molecular docking studies indicated the binding mode of [1,2,4]triazolo[1,5-a]pyrimidine derivatives to PfDHODH, and the highest interaction affinities for the PfDHODH enzyme were in agreement with the in vitro experimental evaluation. Thus, the most active compounds against P. falciparum parasites 20 (R = CF, R = F; IC = 0.086 μM), 21 (R = CF; R = CH; IC = 0.032 μM), 23, (R = CF, R = CF; IC = 0.030 μM) and 24 (R = CF, 2-naphthyl; IC = 0.050 μM) and the most active inhibitor against PfDHODH 19 (R = CF, R = Cl; IC = 0.08 μM - PfDHODH) stood out as new lead compounds for antimalarial drug discovery. Their potent in vitro activity against P. falciparum and the selective inhibition of the PfDHODH enzyme strongly suggest that this is the mechanism of action underlying this series of new [1,2,4]triazolo[1,5-a]pyrimidine derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2020.112941DOI Listing

Publication Analysis

Top Keywords

[124]triazolo[15-a]pyrimidine derivatives
16
anti-p falciparum activity
8
triazolopyrimidine pyrazolopyrimidine
8
pyrazolopyrimidine quinoline
8
quinoline derivatives
8
pfdhodh enzyme
8
pfdhodh
7
derivatives
6
r = cf
6
activity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!