Cadherins are a group of membrane proteins responsible for cell adhesion. They are crucial for cell sorting and recognition during the morphogenesis, but they also play many other roles such as assuring tissue integrity and resistance to stretching, mechanotransduction, cell signaling, regulation of cell proliferation, apoptosis, survival, carcinogenesis, etc. Within the cadherin superfamily, E- and N-cadherin have been especially well studied. They are involved in many aspects of sexual development and reproduction, such as germline development and gametogenesis, gonad development and functioning, and fertilization. E-cadherin is expressed in the primordial germ cells (PGCs) and also participates in PGC migration to the developing gonads where they become enclosed by the N-cadherin-expressing somatic cells. The differential expression of cadherins is also responsible for the establishment of the testis or ovary structure. In the adult testes, N-cadherin is responsible for the integrity of the seminiferous epithelium, regulation of sperm production, and the establishment of the blood-testis barrier. Sex hormones regulate the expression and turnover of N-cadherin influencing the course of spermatogenesis. In the adult ovaries, E- and N-cadherin assure the integrity of ovarian follicles and the formation of corpora lutea. Cadherins are expressed in the mature gametes and facilitate the capacitation of sperm in the female reproductive tract and gamete contact during fertilization. The germ cells and accompanying somatic cells express a series of different cadherins; however, their role in gonads and reproduction is still unknown. In this review, we show what is known and unknown about the role of cadherins in the germline and gonad development, and we suggest topics for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7663743 | PMC |
http://dx.doi.org/10.3390/ijms21218264 | DOI Listing |
Syst Biol Reprod Med
December 2025
Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.
MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
We analyzed the transcriptome data of wildtype and estrogen receptor β knockout () rat ovaries during the early postnatal period and detected remarkable changes in epigenetic regulators and transcription factors. Compared with postnatal day (PD) 4.5 ovaries, PD 6.
View Article and Find Full Text PDFGenes (Basel)
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Physiology and Pathophysiology, St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Rm. 3042, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.
Hypertension is one of the most common comorbidities in cardiometabolic diseases, affecting nearly one third of adults. As a result, its pathophysiological mechanisms have been studied extensively and are focused around pressure natriuresis, the renin-angiotensin system (RAS), the sympathetic nervous system, oxidative stress, and endothelial dysfunction. Additionally, hypertension secondary to other underlying etiologies also exists.
View Article and Find Full Text PDFBiomolecules
January 2025
Área de Genética, Facultad de Ciencias del Mar y Ambientales, INMAR, Universidad de Cádiz, 11510 Cádiz, Spain.
Fish exhibit diverse mechanisms of sex differentiation and determination, shaped by both external and internal influences, often regulated by distinct DNA methylation patterns responding to environmental changes. In aquaculture, reproductive issues in captivity pose significant challenges, particularly the lack of fertilization capabilities in captive-bred males, hindering genetic improvement measures. This study analyzed the methylation patterns and transcriptomic profiles in gonadal tissue DNA from groups differing in rearing conditions and sexual maturity stages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!