Changing the inherent physical capabilities of robots by metamorphosis has been a long-standing goal of engineers. However, this task is challenging because of physical constraints in the robot body, each component of which has a defined functionality. To date, self-reconfiguring robots have limitations in their on-site extensibility because of the large scale of today's unit modules and the complex administration of their coordination, which relies heavily on on-board electronic components. We present an approach to extending and changing the capabilities of a robot by enabling metamorphosis using self-folding origami "exoskeletons." We show how a cubical magnet "robot" can be remotely moved using a controllable magnetic field and hierarchically develop different morphologies by interfacing with different origami exoskeletons. Activated by heat, each exoskeleton is self-folded from a rectangular sheet, extending the capabilities of the initial robot, such as enabling the manipulation of objects or locomotion on the ground, water, or air. Activated by water, the exoskeletons can be removed and are interchangeable. Thus, the system represents an end-to-end (re)cycle. We also present several robot and exoskeleton designs, devices, and experiments with robot metamorphosis using exoskeletons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scirobotics.aao4369 | DOI Listing |
Objective: Respiratory regulation is critical for patients with respiratory dysfunction. Clinically used ventilators can lead to long-term dependence and injury. Extracorporeal assistance approaches such as iron-lung devices provide a noninvasive alternative, however, artificial actuator counterparts have not achieved marvelous biomimetic ventilation as human respiratory muscles.
View Article and Find Full Text PDFMol Biotechnol
September 2024
Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia.
Chitinases are enzymes that can break down chitin, a major component of the exoskeleton of insects and fungi. This feature makes them potential biopesticides in agriculture since they are considered a safe and environmentally friendly alternative to synthetic pesticides. In this work, we performed a comparative study between two different bacterial expression strains to produce a recombinant chitinase with improved stability.
View Article and Find Full Text PDFACS Nano
July 2022
Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
A soccer-ball-shaped three-dimensional DNA origami framework was assembled to serve as an exoskeleton and to direct liposome growth inside. With up to 90 available inner modification sites, cholesterol moieties were introduced as nucleation seeds, and the vesicle templating efficiency was systematically investigated with precisely regulated seed numbers and arrangements. We confirmed that a nonsaturated optimum number ( = 30) of nucleation seeds with relatively even spatial distribution was essential for achieving well-templated and highly uniform liposomes.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2022
Unlabelled: This paper describes the design of a bionic soft exoskeleton and demonstrates its feasibility for assisting the expectoration function rehabilitation of patients with spinal cord injury (SCI).
Methods: A human-robot coupling respiratory mechanic model is established to mimic human cough, and a synergic inspire-expire assistance strategy is proposed to maximize the peak expiratory flow (PEF), the key metric for promoting cough intensity. The negative pressure module of the exoskeleton is a soft "iron lung" using layer-jamming actuation.
Proc Natl Acad Sci U S A
December 2017
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!