From millimeter-scale insects to meter-scale vertebrates, several animal species exhibit multimodal locomotive capabilities in aerial and aquatic environments. To develop robots capable of hybrid aerial and aquatic locomotion, we require versatile propulsive strategies that reconcile the different physical constraints of airborne and aquatic environments. Furthermore, transitioning between aerial and aquatic environments poses substantial challenges at the scale of microrobots, where interfacial surface tension can be substantial relative to the weight and forces produced by the animal/robot. We report the design and operation of an insect-scale robot capable of flying, swimming, and transitioning between air and water. This 175-milligram robot uses a multimodal flapping strategy to efficiently locomote in both fluids. Once the robot swims to the water surface, lightweight electrolytic plates produce oxyhydrogen from the surrounding water that is collected by a buoyancy chamber. Increased buoyancy force from this electrochemical reaction gradually pushes the wings out of the water while the robot maintains upright stability by exploiting surface tension. A sparker ignites the oxyhydrogen, and the robot impulsively takes off from the water surface. This work analyzes the dynamics of flapping locomotion in an aquatic environment, identifies the challenges and benefits of surface tension effects on microrobots, and further develops a suite of new mesoscale devices that culminate in a hybrid, aerial-aquatic microrobot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scirobotics.aao5619 | DOI Listing |
Biol Rev Camb Philos Soc
January 2025
School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia.
Techniques for non-invasive sampling of ecophysiological data in wild animals have been developed in response to challenges associated with studying captive animals or using invasive methods. Of these, drones, also known as Unoccupied Aerial Vehicles (UAVs), and their associated sensors, have emerged as a promising tool in the ecophysiology toolkit. In this review, we synthesise research in a scoping review on the use of drones for studying wildlife ecophysiology using the PRISMA-SCr checklist and identify where efforts have been focused and where knowledge gaps remain.
View Article and Find Full Text PDFLuminescence
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, 13084-971, SP, Brazil. Electronic address:
Background: Distinct classes of environmental contaminants - such as microplastics, volatile organic compounds, inorganic gases, hormones, pesticides/herbicides, and heavy metals - have been continuously released into the environment from different sources. Anthropogenic activities with unprecedented consequences have impacted soil, surface waters, and the atmosphere. In this scenario, developing sensing materials and analytical platforms for monitoring water and air quality is essential to supporting worldwide environmental control agencies.
View Article and Find Full Text PDFSci Total Environ
January 2025
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland.
Over recent decades, global warming has led to sustained glacier mass reduction and the formation of glacier lakes dammed by potentially unstable moraines. When such dams break, devastating Glacial Lake Outburst Floods (GLOFs) can occur in high mountain environments with catastrophic effects on populations and infrastructure. To understand the occurrence of GLOFs in space and time, build frequency-magnitude relationships for disaster risk reduction or identify regional links between GLOF frequency and climate warming, comprehensive databases are critically needed.
View Article and Find Full Text PDFJ Toxicol Environ Health B Crit Rev
January 2025
Department of Ecology and Conservation, Institute of Natural Sciences, Federal University of Lavras, Lavras, MG, Brazil.
Terrestrial and aquatic ecosystems face various chemicals that might induce acute and/or long-term harm. To assess these impacts, ecotoxicological bioassays are essential. However, bioassays using animals, particularly mammals, are costly, time-consuming, and raise ethical concerns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!