Photodynamic therapy to control microbial biofilms.

Photodiagnosis Photodyn Ther

Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India. Electronic address:

Published: March 2021

Microorganisms thrive in well-organized biofilm ecosystems. Biofilm-associated cells typically show increased resistance to antibiotics and contribute significantly to treatment failure. This has prompted investigations aimed at developing advanced and novel antimicrobial approaches that could effectively overcome the shortcomings associated with conventional antibiotic therapy. Studies are ongoing to develop effective curative strategies ranging from the use of peptides, small molecules, nanoparticles to bacteriophages, sonic waves, and light energy targeting various structural and physiological aspects of biofilms. In photodynamic therapy, a light source of a specific wavelength is used to irradiate non-toxic photosensitizers such as tetrapyrroles, synthetic dyes or, naturally occurring compounds to generate reactive oxygen species that can exert a lethal effect on the microbe especially by disrupting the biofilm. The photosensitizer preferentially binds to and accumulates in the microbial cells without causing any damage to the host tissue. Currently, photodynamic therapy is increasingly being used for the treatment of oral caries and dental plaque, chronic wound infections, infected diabetic foot ulcers, cystic fibrosis, chronic sinusitis, implant device-associated infections, etc. This approach is recognized as safe, as it is non-toxic and minimally invasive, making it a reliable, realistic, and promising therapeutic strategy for reducing the microbial burden and biofilm formation in chronic infections. In this review article, we discuss the current and future potential strategies of utilizing photodynamic therapy to extend our ability to impede and eliminate biofilms in various medical conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2020.102090DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
16
photodynamic
4
therapy control
4
control microbial
4
microbial biofilms
4
biofilms microorganisms
4
microorganisms thrive
4
thrive well-organized
4
well-organized biofilm
4
biofilm ecosystems
4

Similar Publications

Photodynamic therapy (PDT) and photothermal therapy (PTT) have emerged as promising treatment options, showcasing immense potential in addressing both oncologic and nononcologic diseases. Single-component organic phototherapeutic agents (SCOPAs) offer advantages compared to inorganic or multicomponent nanomedicine, including better biosafety, lower toxicity, simpler synthesis, and enhanced reproducibility. Nonetheless, how to further improve the therapeutic effectiveness of SCOPAs remains a challenging research area.

View Article and Find Full Text PDF

Biological carriers have emerged as significant tools to deliver radionuclides in nuclear medicine, providing a meaningful perspective for tumor imaging and treatment. Various radionuclide-labeled biological carriers have been developed to meet the needs of biomedical applications. This review introduces the principles of radionuclide-mediated imaging and therapy and the selected criteria of them, as well as a comprehensive description of the characteristics and functions of representative biological carriers including bacteria, cells, viruses, and their biological derivatives, emphasizing the labeled strategies of biological carriers combined with radionuclides.

View Article and Find Full Text PDF

Current status and trend of global research on the pharmacological effects of emodin family: bibliometric study and visual analysis.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Emodin, as a natural active ingredient, has shown great application potential in the fields of medicine, food and cosmetics due to its unique pharmacological effects, such as anti-inflammatory, antioxidant, anti-cancer, etc. In recent years, with the development of science and technology and the increase of people's demand for natural medicine, emodin research has been paid more and more attention by the global scientific research community. The bibliometric analysis of emodin and the construction of knowledge map are still blank.

View Article and Find Full Text PDF

Applications of Au Nanoclusters in Photon-Based Cancer Therapies.

Nanomaterials (Basel)

December 2024

Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.

Atomically precise gold nanoclusters (AuNCs) exhibit unique physical and optical properties, making them highly promising for targeted cancer therapy. Their small size enhances cellular uptake, facilitates rapid distribution to tumor tissues, and minimizes accumulation in non-target organs compared to larger gold nanoparticles. AuNCs, particularly Au, show significant potential in phototherapy, including photothermal (PTT), photodynamic (PDT), and radiation therapies.

View Article and Find Full Text PDF

Afterglow luminescence provides ultrasensitive optical detection by minimizing tissue autofluorescence and increasing the signal-to-noise ratio. However, due to the lack of suitable unimolecular afterglow scaffolds, current afterglow agents are nanocomposites containing multiple components with limited afterglow performance and have rarely been applied for cancer theranostics. Herein, we report the synthesis of a series of oxathiine-containing donor-acceptor block semiconducting polymers (PDCDs) and the observation of their high photoreactivity and strong near-infrared (NIR) afterglow luminescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!