A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chrysin nanocapsules with dual anti-glycemic and anti-hyperlipidemic effects: Chemometric optimization, physicochemical characterization and pharmacodynamic assessment. | LitMetric

Chrysin is a flavonoid with various biological and therapeutic properties. However, its poor oral bioavailability and solubility are challenging barriers against its therapeutic use, which can be circumvented via encapsulation in a suitable nanocarrier. Therefore, the aim of this work was to prepare polymeric chrysin nanocapsules based on polylactic-glycolic acid PLGA with improved oral therapeutic potential, by optimization of their physicochemical properties using response surface methodology. Diabetes was induced in an animal model using streptozotocin to assess the anti-hyperglycemic activity of the selected formulation, and hyperlipidemia was induced in another animal model using a high fat diet to assess its anti-hyperlipidemic activity. Results revealed that the selected chrysin nanocapsular formulation exhibited particle size of 176 ± 2.10 nm, polydispersity index of 0.22 ± 0.01, negative zeta potential, drug entrapment efficiency of 87.10% ± 6.71, a controlled release of chrysin over a period of 24 h, and a significant physical stability after storage for 3 months. Compared to chrysin suspension, the selected nanocapsular formulation exhibited marked anti-hyperglycemic effect for up to 24 h, as well as superior anti-hyperlipidemic potential for 28 days. These improvements in chrysin therapeutic action after its encapsulation into polymeric nanocapsules delineate it as a promising remedy for oral treatment of diabetes and hyperlipidemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.120044DOI Listing

Publication Analysis

Top Keywords

chrysin nanocapsules
8
optimization physicochemical
8
induced animal
8
animal model
8
nanocapsular formulation
8
formulation exhibited
8
chrysin
7
nanocapsules dual
4
dual anti-glycemic
4
anti-glycemic anti-hyperlipidemic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!