Ophthalmologists are long familiar with the eye showing signs of systemic disease, but the association between age-related macular degeneration and abnormal complement activation, common to several renal disorders, has only recently been elucidated. Although complement activation products were identified in drusen almost three decades ago, it was not until the early 21st century that a single-nucleotide polymorphism in the complement factor H gene was identified as a major heritable determinant of age-related macular degeneration, galvanizing global efforts to unravel the pathogenesis of this common disease. Advances in proteomic analyses and familial aggregation studies have revealed distinctive clinical phenotypes segregated by the functional effects of common and rare genetic variants on the mature protein and its splice variant, factor H-like protein 1. The predominance of loss-of-function, N-terminal mutations implicate age-related macular degeneration as a disease of general complement dysregulation, offering several therapeutic avenues for its modulation. Here, we explore the molecular impact of these mutations/polymorphisms on the ability of variant factor H/factor H-like protein 1 to localize to polyanions, pentraxins, proinflammatory triggers, and cell surfaces across ocular and renal tissues and exert its multimodal regulatory functions and their clinical implications. Finally, we critically evaluate key therapeutic and diagnostic efforts in this rapidly evolving field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.survophthal.2020.10.008DOI Listing

Publication Analysis

Top Keywords

age-related macular
16
macular degeneration
16
rare genetic
8
genetic variants
8
complement activation
8
variant factor
8
h-like protein
8
revisiting role
4
factor
4
role factor
4

Similar Publications

Background: Glaucoma, diabetic retinopathy, and age-related macular degeneration impose substantial economic burdens on healthcare systems due to their high prevalence and chronic nature. Nevertheless, comprehensive Italian data is limited. This study aims to collect Italian evidence on the economic impact of these conditions to support more effective healthcare planning.

View Article and Find Full Text PDF

Purpose: To validate the performance of the Notal OCT Analyzer (NOA) in processing self-administered OCT images from an OCT system designed for home use (home OCT [HOCT]) as part of a pivotal study aimed at achieving de novo United States Food and Drug Admininstration marketing authorization.

Design: A prospective quantitative cross-sectional artificial intelligence study.

Participants: The study enrolled adults aged ≥55 years diagnosed with neovascular age-related macular degeneration (nAMD) in ≥1 eligible eye with a best-corrected visual acuity of 20/320 or better.

View Article and Find Full Text PDF

Purpose: Intravitreal injections of anti-VEGF agents are considered as safe, with a very low rate of intraocular inflammations (IOI). Faricimab is a novel intravitreal bispecific antibody targeting both VEGF-A and angiopoietin-Tie2 independently. Despite a safe profile in randomized clinical trials, several real-life studies have reported cases of IOI.

View Article and Find Full Text PDF

A Bifunctional Peptide with Penetration Ability for Treating Retinal Angiogenesis via Eye Drops.

Mol Pharm

January 2025

Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.

Numerous diseases, such as diabetic retinopathy and age-related macular degeneration, can lead to retinal neovascularization, which can seriously impair the visual function and potentially result in blindness. The presence of the blood-retina barrier makes it challenging for ocularly administered drugs to penetrate physiological barriers and reach the ocular posterior segments, including the retina and choroid. Herein, we developed an innovative bifunctional peptide, Tat-C-RP7, which exhibits excellent penetration capabilities and antiangiogenic properties aimed at treating retinal neovascularization diseases.

View Article and Find Full Text PDF

tdCoxSNN: Time-dependent Cox survival neural network for continuous-time dynamic prediction.

J R Stat Soc Ser C Appl Stat

January 2025

Department of Biostatistics and Health Data Science, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.

The aim of dynamic prediction is to provide individualized risk predictions over time, which are updated as new data become available. In pursuit of constructing a dynamic prediction model for a progressive eye disorder, age-related macular degeneration (AMD), we propose a time-dependent Cox survival neural network (tdCoxSNN) to predict its progression using longitudinal fundus images. tdCoxSNN builds upon the time-dependent Cox model by utilizing a neural network to capture the nonlinear effect of time-dependent covariates on the survival outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!