To provide a theoretical basis for sustainable land resource utilization and a reference for areas with similar natural conditions, an evaluation index for land-based ecological security was constructed based on the Driving force-Pressure-State-Impact-Response (DPSIR) model and the improved analytic hierarchy process (IAHP) and entropy methods, and the land-based ecological security status of Xingtai city from 2006 to 2017 was evaluated. Then, the obstacles to land-based ecological security were diagnosed. The results show that the values of the comprehensive evaluation index of land-based ecological security were 0.28-0.66 in the period from 2006 to 2017. The value of the index of land-based ecological security was low in the first seven years and gradually improved in the last five years of the study period. However, the overall situation was grave, and the ecological security conditions were poor. The main obstacles to land-based ecological security were the usage of pesticides, investment in environmental pollution treatments, the degree of machine cultivation, the rate of cultivation and the usage of fertilizer in Xingtai city. Based on the results of the land-based ecological security evaluation and the main obstacles identified in Xingtai city, this paper proposes management strategies and suggestions for improving land-based ecological security in Xingtai city. The specific proposals are as follows: vigorously develop green agriculture, increase investment in environmental pollution control, increase input in science and technology, and strengthen supervision and management of land use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647078PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241618PLOS

Publication Analysis

Top Keywords

ecological security
40
land-based ecological
36
xingtai city
20
obstacles land-based
12
ecological
10
security
10
land-based
9
evaluation land-based
8
2006 2017
8
main obstacles
8

Similar Publications

Accidental ingestion of lead (Pb)-contaminated soils represents a major route of Pb exposure for both adults and children, and the development of accessible and cost-effective solutions to reduce Pb poisoning is urgently required. Here, we present an effective and straightforward technique, involving the consumption of cola beverages, for the purpose of lowering blood Pb levels following the ingestion of contaminated soils in animal models. This method facilitated the direct passage of Pb in contaminated soil through the digestive system, enhancing its elimination without absorption into systemic circulation.

View Article and Find Full Text PDF

Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.

View Article and Find Full Text PDF

Atmospheric Hydroxyl Radical Route Revealed: Interface-Mediated Effects of Mineral-Bearing Microdroplet Aerosol.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China.

Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10 M s.

View Article and Find Full Text PDF

Involvement of inorganic nitrogen species (NO (x = 2, 3)) in the degradation of organic contaminants in environmental waters via UV irradiation or chemical oxidation: A dual-edged approach.

Sci Total Environ

January 2025

Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou, 510000, China.

OH-mediated advanced oxidation processes (AOPs) are widely used in wastewater treatment and drinking water purification. Recently, an increasing number of studies have indicated that common inorganic nitrogen ions can efficiently generate •OH under UV irradiation, demonstrating strong performance in the degradation of various contaminants. Conversely, the presence of inorganic nitrogen ions in UV or other oxidation processes dramatically increases the yield of toxic nitro (so)-aromatic products and the formation potential of nitrogenous disinfection by-products with high genotoxicity and cytotoxicity.

View Article and Find Full Text PDF

Recruitment of specific rhizosphere microorganisms in saline-alkali tolerant rice improves adaptation to saline-alkali stress.

Sci Total Environ

January 2025

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China. Electronic address:

Increasing annual soil salinization poses a major threat to global ecological security. Soil microorganisms play an important role in improving plant adaptability to stress tolerance, however, the mechanism of saline-alkali tolerance to plants associated with rhizosphere microbiome is unclear. We investigated the composition and structure of the rhizospheric bacteria and fungi communities of the saline-alkali tolerant (Oryza sativa var.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!