The largest and most dynamic agricultural frontier in Brazil is known as MATOPIBA, an area that covers part of the Cerrado biome. Within this region, Western Bahia stands out as a large producer of soy and cotton. There are no studies that quantify carbon stocks for different land uses and land cover types in Western Bahia, which hinders comprehension of the role of agricultural expansion in carbon dynamics and the development of sustainable agriculture policies. Here, we evaluate how the land use changes in this region have affected the carbon balance in the aboveground biomass (AGB), belowground biomass (BGB), and soil reservoirs. We collected soil samples for areas with different land uses and land cover types to estimate soil carbon stocks (SCS) and combined remote sensing results and modeling techniques to develop a historical reconstruction of spatial patterns of SCS, AGB, and BGB during the period 1990-2018. The replacement of areas from the forest formations class with pasture and rainfed agriculture reduced the 100 cm depth SCS (SCS100) by 37.3% (p = 0.031) and 30.3% (p = 0.053), respectively. By contrast, the conversion of pasture and rainfed agriculture to irrigated agriculture increased SCS100 by 34% (p = 0.034) and 26.5% (p = 0.022), respectively. Spatial changes in historical carbon stocks are strongly associated with land use changes that occurred between 1990 and 2018. We estimated a non-significant loss of 61.9 Tg-C (p = 0.726) from the total carbon stocks (calculated as the sum of AGB, BGB, and SCS) of which 80% of the losses came from soil stocks, 11% from BGB, and 8% from AGB. These findings reveal the need to monitor carbon stocks in sandy soils to reduce the uncertainties of estimates and support the development of effective sustainable agriculture policies. The best alternatives for reducing carbon losses in the Cerrado are to maintain natural forest cover and to recover soils through sustainable soil management, especially in pasturelands where soil carbon stocks are lowest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647089 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241637 | PLOS |
Sci Rep
December 2024
Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.
Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).
View Article and Find Full Text PDFFront Plant Sci
December 2024
Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Valdivia, Chile.
Introduction: Secondary forests and coffee cultivation systems with shade trees might have great potential for carbon sequestration as a means of climate change adaptation and mitigation. This study aimed to measure carbon stocks in coffee plantations under different managements and secondary forest systems in the Peruvian Amazon rainforest (San Martín Region).
Methods: The carbon stock in secondary forest trees was estimated using allometric equations, while carbon stocks in soil, herbaceous biomass, and leaf litter were determined through sampling and laboratory analysis.
Residential and non-residential buildings are a major contributor to human well-being. At the same time, buildings cause 30% of final energy use, 18% of greenhouse gas emissions (GHGE), and about 65% of material accumulation globally. With electrification and higher energy efficiency of buildings, material-related emissions gain relevance.
View Article and Find Full Text PDFManagement of building materials' stocks and flows is a major opportunity for circularity and de-carbonization. We examine the relationship between material consumption and associated greenhouse gas (GHG) emissions under different scenarios in Israel, a developed country with an already high population density that expects tremendous growth in its housing stock by 2050. We created scenarios of varying housing unit sizes and additional material efficiency practices: fabrication yield, lifetime extension, material substitution, recycling, and their combination, resulting in 18 scenarios.
View Article and Find Full Text PDFJ Environ Qual
December 2024
Departamento de Solos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Although ecosystem management and restoration are known to enhance carbon storage, limited knowledge of ecosystem-specific soil organic carbon (SOC) stocks and processes hinders the development of climate-ready, biodiversity-focused policies. Baseline SOC stocks data for specific ecosystems is essential. This paper aims to: (i) examine SOC stock variability across major grassy ecosystems in Brazil and (ii) discuss data limitations and applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!