Cues of maternal and paternal origins interact to control seed development, and the underlying molecular mechanisms are still far from clear. Here, we show that TOPOISOMERASE Iα (TOP1α), UP-FRAMESHIFT SUPPRESSOR 1 (UPF1), and TRANSPARENT TESTA GLABRA2 (TTG2) gametophytically, biparentally regulate seed size in Arabidopsis. TOP1α and UPF1 are mainly expressed in antipodal cells, and loss of their function leads to ectopic TTG2 expression in these female gametophytic cells. We further demonstrate that TOP1α and UPF1 directly repress TTG2 expression through affecting its chromatin status and determine its relative expression in antipodal cells versus sperm cells, which controls seed size in a dosage-dependent and parent-of-origin-dependent manner. The molecular interplay among these three genes explains their biparental gametophytic effect during diploidy and interploidy reciprocal crosses. Taken together, our findings reveal a molecular framework of parental interaction for seed size control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673560PMC
http://dx.doi.org/10.1371/journal.pbio.3000930DOI Listing

Publication Analysis

Top Keywords

seed size
16
top1α upf1
12
regulate seed
8
antipodal cells
8
ttg2 expression
8
seed
5
top1α
4
ttg2
4
upf1 ttg2
4
ttg2 regulate
4

Similar Publications

Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.

View Article and Find Full Text PDF

α-Synuclein interaction with POPC/POPS vesicles.

Soft Matter

January 2025

Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.

We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.

View Article and Find Full Text PDF

In this study, the extract of leaf and flower of was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.

View Article and Find Full Text PDF

Long Cycle Life All-Solid-State Batteries Enabled by Medium Nanosized Catholytes.

J Phys Chem Lett

January 2025

School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center (SEED) and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Poor interfacial contact in a solid-state cathode is a major challenge in the development of high specific energy and long cycle life all-solid-state batteries (ASSBs). Herein, the influence of catholyte size on the electrochemical performance of ASSBs is inspected, and the size of LiPSCl (LPSCl) catholyte is tuned for optimizing the ionic conduction and active material utilization in cathode. A medium nanosized LPSCl catholyte not only forms fast ionic transport network throughout the cathode but also provides high specific interfacial area to alleviate the electrochemo-mechanical coupling effect and thus benefits comprehensive improvement of electrochemical performance in ASSBs.

View Article and Find Full Text PDF

Plant cells have two major organelles with their own genomes: chloroplasts and mitochondria. While chloroplast genomes tend to be structurally conserved, the mitochondrial genomes of plants, which are much larger than those of animals, are characterized by complex structural variation. We introduce TIPPo, a user-friendly, reference-free assembly tool that uses PacBio high-fidelity long-read data and that does not rely on genomes from related species or nuclear genome information for the assembly of organellar genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!