Linking Triclosan's Structural Features to Its Environmental Fate and Photoproducts.

Environ Sci Technol

Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland.

Published: November 2020

Triclosan is a high-production volume chemical, which has become widely detected in environmental systems because of its widespread usage. Photodegradation has been identified as a major degradation pathway, but the identified photoproducts are also chemicals of concern. In this study, lower chlorinated derivatives of triclosan were synthesized to investigate the impact the chlorine substituents have on the photodegradation rate and the photoproducts produced. In addition, the photodegradation of two classes of photoproducts-dibenzo--dioxins (DDs) and 2,2'-dihydroxylated biphenyls-was also investigated. Degradation of triclosan in near-surface sunlit waters was relatively fast ( < 5 h). Calculated degradation rates were slower for DDs and faster for dihydroxylated biphenyls in comparison to that for triclosan. In addition, the 2'-Cl substituent was critical for the high quantum yield measured for triclosan and necessary for the photodegradation mechanism that forms DDs and dihydroxylated biphenyls. The 4-Cl substituent was responsible for higher rates of light absorption and the environmentally relevant p. Without either of these substituents, the environmental fate of triclosan would be markedly different.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c05121DOI Listing

Publication Analysis

Top Keywords

environmental fate
8
dihydroxylated biphenyls
8
triclosan
6
linking triclosan's
4
triclosan's structural
4
structural features
4
features environmental
4
fate photoproducts
4
photoproducts triclosan
4
triclosan high-production
4

Similar Publications

The fate of intracellular and extracellular antibiotic resistance genes during ultrafiltration-ultraviolet-chlorination in a full-scale wastewater tretament plant.

J Hazard Mater

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia. Electronic address:

Effluent from wastewater treatment plants (WWTPs) is recognized as a significant source of antibiotic resistance genes (ARGs) in the environment. Advanced treatment processes such as ultrafiltration (UF), ultraviolet (UV) light disinfection, and chlorination have emerged as promising approaches for ARG removal. However, the efficacy of sequential disinfection processes, such as UF-UV-chlorination on intracellular (iARGs) and extracellular ARGs (eARGs), remains largely unknown.

View Article and Find Full Text PDF

Comparison of microplastics heteroaggregation with MoS and graphene oxide nanosheets: Dependence on the configuration and impacts on aquatic transport.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.

View Article and Find Full Text PDF

Waste activated sludge (WAS) pose a potential risk for the spread of antibiotic resistance genes (ARGs). This study estimated the effect of sludge on antibiotic resistance genes (ARGs) in anaerobic sludge digestion process. Metagenomic analysis revealed anaerobic sludge with potassium ferrate (PF) and the modified PF loaded steel slag (MPF-SS) brought an increase of ARGs during digestion process.

View Article and Find Full Text PDF

Regulation of desiccation-immersion cycle on the rate and fate of dissolved organic carbon release by Ulva pertusa.

Mar Environ Res

December 2024

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:

Macroalgae widely distribute in intertidal zones, one of blue carbon organisms. However, the regulatory mechanisms of tide on the carbon sequestration of macroalgae are still unclear. This study explored the effects of desiccation-rewetting cycles induced by tide on dissolved organic carbon (DOC) release from Ulva pertusa, which is prevalent from high to low tidal zones.

View Article and Find Full Text PDF

Per- and poly-fluoroalkyl substances (PFAS) have emerged as a silent menace, infiltrating groundwater systems worldwide. Many countries, preoccupied with tackling legacy pollutants, have inadvertently neglected the emerging threat of PFAS. This review provides an exhaustive analysis beyond the current state of knowledge and sustainable pathways vis-a-vis addressing PFAS in groundwater systems globally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!