Purpose: Activation of proteolytic enzymes, calpains and caspases, have been observed in many models of retinal disease. We previously demonstrated calpain activation in monkey retinal explants cultured under hypoxia. However, cellular responses are often species-specific. The purpose of the present study was to determine whether calpains or caspase-3 was involved in retinal ganglion cell (RGC) damage caused by hypoxia/reoxygenation in human retinal explants. The explant model was improved by use of an oxygen-controlled chamber.
Methods: Human and monkey retinal explants were cultured under hypoxic conditions in an oxygen-controlled chamber and then reoxygenated. Calpain inhibitor SNJ-1945 was maintained throughout the culture period. Immunohistochemistry and immunoblotting were performed for calpains 1 and 2, calpastatin, α-spectrin, calpain-specific α-spectrin breakdown product at 150 kDa (SBDP150), caspase-3, and apoptosis-inducing factor (AIF). Propidium iodide (PI) staining measured membrane disruption, and TUNEL staining detected DNA fragmentation.
Results: Activation of calpains in nerve fibers and increases of PI-positive RGCs were observed in retinal explants incubated for 16-hour hypoxia/8-hour reoxygenation. Except for autolysis of calpain 2, SNJ-1945 ameliorated these changes. In longer incubations under 24-hour hypoxia/16-hour reoxygenation, TUNEL-positive cells appeared, although activated caspase-3 and truncated AIF were not observed. DNA fragmentation was inhibited by SNJ-1945.
Conclusions: An improved human retinal explant model showed that calpains, not caspase-3, were involved in cell damage induced by hypoxia/reoxygenation. This finding could be relevant for patient treatment with a calpain inhibitor if calpain activation is documented in human retinal ischemic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671854 | PMC |
http://dx.doi.org/10.1167/iovs.61.13.13 | DOI Listing |
PLoS One
December 2024
Division of Ophthalmology, Department of Special Surgery, Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan.
Purpose: The emulsification of silicone oil (SO) remains poorly understood. In the present study, we investigated the physical properties of unused pharmaceutical SO samples under various conditions. Moreover, clinical correlations with the patients' SO samples were assessed.
View Article and Find Full Text PDFCutan Ocul Toxicol
December 2024
Edward Harkness Institute of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, USA.
Messenger RNA (mRNA)-based therapies are a promising approach to medical treatment. Except for infectious diseases, no other disease has mRNA-based therapies available. The eye is an ideal model for mRNA therapeutic development because it requires limited dosing.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
November 2024
Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
Purpose: In October 2023, other cases with early silicone oil opacification within hours after intraocular implantation in the absence of emulsification occurred. While multiple, small series of this phenomenon are now documented during the last decade, the cause was never unmasked. In this study, we analyzed explanted patient samples, unused samples of the affected, and a control batch of the same silicone oil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!