Advocating the Development of Next-Generation, Advanced-Design Low-Field Magnetic Resonance Systems.

Invest Radiol

From the Department of Diagnostic, Interventional, and Pediatric Radiology, University Hospital of Bern, Inselspital, University of Bern, Bern, Switzerland.

Published: December 2020

New next-generation low-field magnetic resonance imaging systems (operating in the range of 0.5 T) hold great potential for increasing access to clinical diagnosis and needed health care both in developed countries and worldwide. The relevant history concerning the choice of field strength, which resulted in 1.5 T still dominating today the number of installed systems, is considered, together with design advances possible because of interval developments, since low field was considered for clinical use in the 1980s, and current research. The potential impact of low-cost, advanced-generation low-field magnetic resonance imaging systems, properly designed, is high in terms of further dissemination of health care-across the gamut from industrial to developing countries-regardless of disease entity and anatomic region of involvement, with major niche applications likely as well.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RLI.0000000000000703DOI Listing

Publication Analysis

Top Keywords

low-field magnetic
12
magnetic resonance
12
resonance imaging
8
imaging systems
8
advocating development
4
development next-generation
4
next-generation advanced-design
4
advanced-design low-field
4
systems
4
resonance systems
4

Similar Publications

The corn starch-protein complexes before postharvest ripening (JD-0) and after postharvest ripening (JD-40) were subjected to protease treatment, and the influence of protein on starch retrogradation was studied. Kinetic studies of starch retrogradation showed that protein reduced the retrogradation rate constant (k) of starch by 25.46 % (JD-0) and 7.

View Article and Find Full Text PDF

The application of sand-clay mixtures is diverse in contemporary engineering practices, with particular emphasis on their shear strength characteristics. This study focused on the estimation of the shear strength of sand-clay mixtures using the artificial neural network (ANN) and low-field nuclear magnetic resonance (NMR) spectroscopy. In this study, NMR tests and triaxial compression tests were carried out on 160 artificial sand-clay mixtures with different mineralogical compositions, water contents, and dry densities in the laboratory to obtain the T spectra and shear strength indices, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • Proteoglycans like biglycan (Bgn) and decorin (Dcn) are crucial for bone health, primarily by attracting water through their unique structures, but their specific functions are not fully understood.
  • Research using knockout mouse models revealed that Bgn deficiency leads to significant bone loss and reduced resilience, while Dcn appears to have a less pronounced impact, although it compensates when Bgn is absent.
  • Both Bgn and Dcn are essential for important signaling pathways in bone maintenance, with Bgn playing a dominant role in preserving bone structure and hydration levels.
View Article and Find Full Text PDF

The goal of this study was to determine how radiologists' rating of image quality when using 0.5T Magnetic Resonance Imaging (MRI) compares to Computed Tomography (CT) for visualization of pathology and evaluation of specific anatomic regions within the paranasal sinuses. 42 patients with clinical CT scans opted to have a 0.

View Article and Find Full Text PDF

Enhancing stability of fermented egg white gels: Influence of guar and xanthan gum addition order during yogurt-like fermentation.

Int J Biol Macromol

December 2024

School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia. Electronic address:

Egg white gels prepared through fermentation, similar to yogurt production, offer a high-protein, zero-fat alternative to traditional dairy products. This study investigated the impact of guar gum (GG) and xanthan gum (XG) as rheological modifiers on the stability of fermented egg white gels. Rheological analysis revealed that the addition of both gums significantly influenced gel properties, with XG demonstrating superior performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!