Impaired clearance in the Alzheimer's Disease (AD) brain is key in the formation of Aβ parenchymal plaques and cerebrovascular deposits known as cerebral amyloid angiopathy (CAA), present in >80% of AD patients and ~50% of non-AD elderly subjects. Aβ deposits are highly heterogeneous, containing multiple fragments mostly derived from catabolism of Aβ40/Aβ42, which exhibit dissimilar aggregation properties. Remarkably, the role of these physiologically relevant Aβ species in cerebrovascular injury and their impact in vascular pathology is unknown. We sought to understand how heterogeneous Aβ species affect cerebral endothelial health and assess whether their diverse effects are associated with the peptides aggregation propensities. We analyzed cerebral microvascular endothelial cell (CMEC) viability, blood-brain barrier (BBB) permeability, and angiogenesis, all relevant aspects of brain microvascular dysfunction. We found that Aβ peptides and fragments exerted differential effects on cerebrovascular pathology. Peptides forming mostly oligomeric structures induced CMEC apoptosis, whereas fibrillar aggregates increased BBB permeability without apoptotic effects. Interestingly, all Aβ species tested inhibited angiogenesis in vitro. These data link the biological effects of the heterogeneous Aβ peptides to their primary structure and aggregation, strongly suggesting that the composition of amyloid deposits influences clinical aspects of the AD vascular pathology. As the presence of predominant oligomeric structures in proximity of the vessel walls may lead to CMEC death and induction of microhemorrhages, fibrillar amyloid is likely responsible for increased BBB permeability and associated neurovascular dysfunction. These results have the potential to unveil more specific therapeutic targets and clarify the multifactorial nature of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681048PMC
http://dx.doi.org/10.1111/acel.13258DOI Listing

Publication Analysis

Top Keywords

aβ species
12
bbb permeability
12
endothelial cell
8
viability blood-brain
8
blood-brain barrier
8
vascular pathology
8
heterogeneous aβ
8
aβ peptides
8
oligomeric structures
8
increased bbb
8

Similar Publications

Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.

J Biol Chem

April 2015

From the Department of Biology, Faculty of Science and Engineering and the Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe 658-8501, Japan

Article Synopsis
  • * The chaperone utilizes ATP binding and hydrolysis to generate mechanical force necessary for disaggregating proteins, although the details of its ATPase cycle remain complex and poorly understood across different species.
  • * Research on ordered structures of ClpB from Thermus thermophilus revealed that ATP binding is random initially, but once enough ATP binds to one ring, it activates the other ring for cooperative ATP hydrolysis, which is essential for the protein disaggregation function of ClpB.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!