The juxtaposition of intracellular DNA segments, together with the DNA-passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II. We show that the low knotting probability of DNA does not depend on the simplification capacity of topoisomerase II nor on the activities of cohesin or Smc5/6 complexes. However, inactivation of condensin increases the occurrence of DNA knots throughout the cell cycle. These results suggest an in vivo role for the DNA loop extrusion activity of condensin and may explain why condensin disruption produces a variety of alterations in interphase chromatin, in addition to persistent sister chromatid interlinks in mitotic chromatin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780148 | PMC |
http://dx.doi.org/10.15252/embj.2020105393 | DOI Listing |
Nat Commun
January 2025
Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
Type IA topoisomerases (TopoIAs) are present in all living organisms. They resolve DNA/RNA catenanes, knots and supercoils by breaking and rejoining single-stranded DNA/RNA segments and allowing the passage of another nucleic acid segment through the break. Topoisomerase III-β (TOP3B), the only RNA topoisomerase in metazoans, promotes R-loop disassembly and translation of mRNAs.
View Article and Find Full Text PDFCrit Rev Biotechnol
January 2025
Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India.
G-quadruplex structures (GQSes) are the intricate molecular knots or marvels that play diverse roles in various cellular processes, such as replication, transcription, and translation, which regulate gene expression. Even though GQSes can be found throughout the genome, they are more prevalent in certain genomic regions like promoters and 5'-UTRs. This review discusses the functionality of GQSes across various regions of the genome and draws attention to the intriguing world of DNA and RNA GQSes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
Meloidogyne enterolobii, a guava root-knot nematode, is a highly virulent pest in tropical and subtropical regions causing galls or knots in roots of diverse plant species posing a serious threat to agriculture. Managing this nematode is challenging due to limitations in conventional identification based on isolation and microscopic classification requiring expertise and time. A colorimetric and fluorescent LAMP assay using simplified extraction method targeting rDNA-ITS region was developed to detect M.
View Article and Find Full Text PDFPlant Dis
November 2024
Guangxi University, Agricultural College, 100, Daxue Road Nanning, Guangxi, CN, Nanning, China, 530005;
Proc Natl Acad Sci U S A
September 2024
Dipartimento di Fisica, Sapienza Universitá di Roma, Roma 00185, Italy.
The representation of complex systems as networks has become a critical tool across many fields of science. In the context of physical networks, such as biological neural networks, vascular networks, or network liquids where the nodes and edges occupy volume in three-dimensional space, the question of how they become densely packed is of special importance. Here, we investigate a model network liquid, which is known to densify via two successive liquid-liquid phase transitions (LLPTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!